Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (316)
  • Open Access

    ARTICLE

    Optimizing the Diameter of Plugging Balls in Deep Shale Gas Wells

    Yi Song1, Zheyu Hu2,*, Cheng Shen1, Lan Ren2, Xingwu Guo1, Ran Lin2, Kun Wang3, Zhiyong Zhao4

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.3, pp. 609-624, 2024, DOI:10.32604/fdmp.2023.030521

    Abstract Deep shale gas reserves that have been fractured typically have many relatively close perforation holes. Due to the proximity of each fracture during the formation of the fracture network, there is significant stress interference, which results in uneven fracture propagation. It is common practice to use “balls” to temporarily plug fracture openings in order to lessen liquid intake and achieve uniform propagation in each cluster. In this study, a diameter optimization model is introduced for these plugging balls based on a multi-cluster fracture propagation model and a perforation dynamic abrasion model. This approach relies on More > Graphic Abstract

    Optimizing the Diameter of Plugging Balls in Deep Shale Gas Wells

  • Open Access

    ARTICLE

    A Gel-Based Solidification Technology for Large Fracture Plugging

    Kunjian Wang1, Ruibin He1, Qianhua Liao1, Kun Xu1, Wen Wang1, Kan Chen2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.3, pp. 563-578, 2024, DOI:10.32604/fdmp.2023.030152

    Abstract Fault fractures usually have large openings and considerable extension. Accordingly, cross-linked gel materials are generally considered more suitable plugging agents than water-based gels because the latter often undergo contamination via formation water, which prevents them from being effective over long times. Hence, in this study, a set of oil-based composite gels based on waste grease and epoxy resin has been developed. These materials have been observed to possess high compressive strength and resistance to the aforementioned contamination, thereby leading to notable increase in plugging success rate. The compressive strength, thickening time, and resistance to formation More >

  • Open Access

    ARTICLE

    Simulation of Corrosion-Induced Cracking of Reinforced Concrete Based on Fracture Phase Field Method

    Xiaozhou Xia1, Changsheng Qin1, Guangda Lu2, Xin Gu1,*, Qing Zhang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2257-2276, 2024, DOI:10.32604/cmes.2023.031238

    Abstract Accurate simulation of the cracking process caused by rust expansion of reinforced concrete (RC) structures plays an intuitive role in revealing the corrosion-induced failure mechanism. Considering the quasi-brittle fracture of concrete, the fracture phase field driven by the compressive-shear term is constructed and added to the traditional brittle fracture phase field model. The rationality of the proposed model is verified by a mixed fracture example under a shear displacement load. Then, the extended fracture phase model is applied to simulate the corrosion-induced cracking process of RC. The cracking patterns caused by non-uniform corrosion expansion are… More >

  • Open Access

    ARTICLE

    Numerical Simulation of Slurry Diffusion in Fractured Rocks Considering a Time-Varying Viscosity

    Lei Zhu1,2, Bin Liu2, Xuewei Liu2,*, Wei Deng1, Wenjie Yao1, Ying Fan1

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.2, pp. 401-427, 2024, DOI:10.32604/fdmp.2023.041444

    Abstract To analyze the effects of a time-varying viscosity on the penetration length of grouting, in this study cement slurries with varying water-cement ratios have been investigated using the Bingham’s fluid flow equation and a discrete element method. A fluid-solid coupling numerical model has been introduced accordingly, and its accuracy has been validated through comparison of theoretical and numerical solutions. For different fracture forms (a single fracture, a branch fracture, and a fracture network), the influence of the time-varying viscosity on the slurry length range has been investigated, considering the change in the fracture aperture. The More >

  • Open Access

    PROCEEDINGS

    Fracture Behavior of Periodic Porous Structures by Phase Field Method

    Yuxuan Ying1, Wei Huang1,*, Yu-E Ma1, Fan Peng1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.4, pp. 1-3, 2023, DOI:10.32604/icces.2023.010572

    Abstract Intensive dynamic loadings are the main threats to the structural damage of protective structures and inner equipment, which has attracted a lot of attention in the field of advance impulsive resistance. Nanofluidic liquid foam (NLF) has become a novel and efficient energy absorption system due to its reusable energy absorption, ultra-high load transfer, and high energy absorption ratio. In order to solve the current problem that the energy absorption mechanism of NLF is still unclear, this paper conducted a systematic experimental study on the dynamic compression and energy absorption behaviours of NLF. The quasi-static cyclic… More >

  • Open Access

    PROCEEDINGS

    Prediction of Ductile Fracture for Ti-6Al-4V Alloy Fabricated by L-PBF Based on Unit Cell Calculations

    Baisen Gao1, Wei Huang1,*, Shengnan Wang1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.4, pp. 1-2, 2023, DOI:10.32604/icces.2023.010553

    Abstract Additive manufacturing of metallic components can result in initial defects that significantly reduce their mechanical properties [1]. Therefore, there has been considerable interest in studying the fracture and damage behavior of such components through theoretical and experimental studies [2, 3]. Developing a reliable model for predicting the ductile fracture of additively manufactured components is currently of great importance. In this study, we conducted unit cell calculations with the calibration of experimental tests to investigate the ductile fracture of Ti-6Al-4V alloy fabricated through additive manufacturing. The stress triaxiality and Lode parameter were enforced constant for the… More >

  • Open Access

    PROCEEDINGS

    Fragile Points Method for Modeling Complex Structural Failure

    Mingjing Li1,*, Leiting Dong1, Satya N. Atluri2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.4, pp. 1-2, 2023, DOI:10.32604/icces.2023.09689

    Abstract The Fragile Points Method (FPM) is a discontinuous meshless method based on the Galerkin weak form [1]. In the FPM, the problem domain is discretized by spatial points and subdomains, and the displacement trial function of each subdomain is derived based on the points within the support domain. For this reason, the FPM doesn’t suffer from the mesh distortion and is suitable to model complex structural deformations. Furthermore, similar to the discontinuous Galerkin finite element method, the displacement trial functions used in the FPM is piece-wise continuous, and the numerical flux is introduced across each… More >

  • Open Access

    PROCEEDINGS

    Effects of Friction and Strain Hardening on ELS Mode II Interlaminar Fracture Test

    Chennian Shi1, Wu Xu1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.4, pp. 1-2, 2023, DOI:10.32604/icces.2023.09634

    Abstract Accurate determination of the interlaminar mode II fracture toughness is much more difficult than that of mode I delamination, due to friction and crack closure. In this paper, A-scan is used to measure the crack growth length of end-loaded split (ELS) test through cyclic unloading and reloading. Interesting hysteresis loops are observed in the experimental load-displacement curve, which has not been fully understood by the existing literature. The frictional effect from the load fixture is analytically determined and numerically validated. It absorbs considerable energy during the creation of new crack surface, but has been overlooked.… More >

  • Open Access

    PROCEEDINGS

    An Efficient Peridynamics Based Statistical Multiscale Method for Fracture in Composite Structure with Randomly Distributed Particles

    Zihao Yang1, Shaoqi Zheng1, Fei Han2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.4, pp. 1-1, 2023, DOI:10.32604/icces.2023.09250

    Abstract This paper proposes a peridynamics-based statistical multiscale (PSM) framework to simulate the macroscopic structure fracture with high efficiency. The heterogeneities of composites, including the shape, spatial distribution and volume fraction of particles, are characterized within the representative volume elements (RVEs), and their impact on structure failure are extracted as two types of peridynamic parameters, namely, statistical critical stretch and equivalent micromodulus. At the microscale level, a bondbased peridynamic (BPD) model with energy-based micromodulus correction technique is introduced to simulate the fracture in RVEs, and then the computational model of statistical critical stretch is established through… More >

  • Open Access

    PROCEEDINGS

    Chemo-Mechanical Peridynamic Simulation of Dynamic Fracture-Pattern Formation in Lithium-Ion Batteries

    Xiaofei Wang1, Qi Tong1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.3, pp. 1-1, 2023, DOI:10.32604/icces.2023.09181

    Abstract Mechanical failure due to lithium-ion diffusion is one of the main obstacles to fulfill the potential of the electrode materials. Various fracture patterns in different electrode structures are observed in practice, which may have a profound impact on the performance and the service life of electrodes during operation. However, the mechanisms are largely unclear and still lack systematic understanding. Here we propose a coupled chemo-mechanical model based on peridynamics [1] and use it to study the dynamic fracturepattern formation in electrode materials and solid electrolytes during lithiation/delithiation cycles. We found in hollow core-shell nanowires that More >

Displaying 21-30 on page 3 of 316. Per Page