Fatma Taher1, Hamoud Alshammari2, Lobna Osman3, Mohamed Elhoseny4, Abdulaziz Shehab5,2,*, Eman Elayat6
CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 4485-4499, 2023, DOI:10.32604/cmc.2023.036118
Abstract Cardiac diseases are one of the greatest global health challenges. Due to the high annual mortality rates, cardiac diseases have attracted the attention of numerous researchers in recent years. This article proposes a hybrid fuzzy fusion classification model for cardiac arrhythmia diseases. The fusion model is utilized to optimally select the highest-ranked features generated by a variety of well-known feature-selection algorithms. An ensemble of classifiers is then applied to the fusion’s results. The proposed model classifies the arrhythmia dataset from the University of California, Irvine into normal/abnormal classes as well as 16 classes of arrhythmia.… More >