Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (160)
  • Open Access

    ARTICLE

    Cooperative Metaheuristics with Dynamic Dimension Reduction for High-Dimensional Optimization Problems

    Junxiang Li1,2, Zhipeng Dong2, Ben Han3, Jianqiao Chen3, Xinxin Zhang1,2,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-19, 2026, DOI:10.32604/cmc.2025.070816 - 10 November 2025

    Abstract Owing to their global search capabilities and gradient-free operation, metaheuristic algorithms are widely applied to a wide range of optimization problems. However, their computational demands become prohibitive when tackling high-dimensional optimization challenges. To effectively address these challenges, this study introduces cooperative metaheuristics integrating dynamic dimension reduction (DR). Building upon particle swarm optimization (PSO) and differential evolution (DE), the proposed cooperative methods C-PSO and C-DE are developed. In the proposed methods, the modified principal components analysis (PCA) is utilized to reduce the dimension of design variables, thereby decreasing computational costs. The dynamic DR strategy implements periodic… More >

  • Open Access

    ARTICLE

    Secure and Invisible Dual Watermarking for Digital Content Based on Optimized Octonion Moments and Chaotic Metaheuristics

    Ahmed El Maloufy, Mohamed Amine Tahiri, Ahmed Bencherqui, Hicham Karmouni, Mhamed Sayyouri*

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 5789-5822, 2025, DOI:10.32604/cmc.2025.068885 - 23 October 2025

    Abstract In the current digital context, safeguarding copyright is a major issue, particularly for architectural drawings produced by students. These works are frequently the result of innovative academic thinking combining creativity and technical precision. They are particularly vulnerable to the risk of illegal reproduction when disseminated in digital format. This research suggests, for the first time, an innovative approach to copyright protection by embedding a double digital watermark to address this challenge. The solution relies on a synergistic fusion of several sophisticated methods: Krawtchouk Optimized Octonion Moments (OKOM), Quaternion Singular Value Decomposition (QSVD), and Discrete Waveform… More >

  • Open Access

    ARTICLE

    Heuristic Weight Initialization for Transfer Learning in Classification Problems

    Musulmon Lolaev1, Anand Paul2,*, Jeonghong Kim1

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 4155-4171, 2025, DOI:10.32604/cmc.2025.064758 - 23 September 2025

    Abstract Transfer learning is the predominant method for adapting pre-trained models on another task to new domains while preserving their internal architectures and augmenting them with requisite layers in Deep Neural Network models. Training intricate pre-trained models on a sizable dataset requires significant resources to fine-tune hyperparameters carefully. Most existing initialization methods mainly focus on gradient flow-related problems, such as gradient vanishing or exploding, or other existing approaches that require extra models that do not consider our setting, which is more practical. To address these problems, we suggest employing gradient-free heuristic methods to initialize the weights… More >

  • Open Access

    ARTICLE

    Optimizing Microgrid Energy Management via DE-HHO Hybrid Metaheuristics

    Jingrui Liu1,2,*, Zhiwen Hou1,2, Boyu Wang1,2, Tianxiang Yin3,4

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 4729-4754, 2025, DOI:10.32604/cmc.2025.066138 - 30 July 2025

    Abstract In response to the increasing global energy demand and environmental pollution, microgrids have emerged as an innovative solution by integrating distributed energy resources (DERs), energy storage systems, and loads to improve energy efficiency and reliability. This study proposes a novel hybrid optimization algorithm, DE-HHO, combining differential evolution (DE) and Harris Hawks optimization (HHO) to address microgrid scheduling issues. The proposed method adopts a multi-objective optimization framework that simultaneously minimizes operational costs and environmental impacts. The DE-HHO algorithm demonstrates significant advantages in convergence speed and global search capability through the analysis of wind, solar, micro-gas turbine, More >

  • Open Access

    REVIEW

    Patterns in Heuristic Optimization Algorithms: A Comprehensive Analysis

    Robertas Damasevicius*

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 1493-1538, 2025, DOI:10.32604/cmc.2024.057431 - 17 February 2025

    Abstract Heuristic optimization algorithms have been widely used in solving complex optimization problems in various fields such as engineering, economics, and computer science. These algorithms are designed to find high-quality solutions efficiently by balancing exploration of the search space and exploitation of promising solutions. While heuristic optimization algorithms vary in their specific details, they often exhibit common patterns that are essential to their effectiveness. This paper aims to analyze and explore common patterns in heuristic optimization algorithms. Through a comprehensive review of the literature, we identify the patterns that are commonly observed in these algorithms, including… More >

  • Open Access

    REVIEW

    Unveiling Effective Heuristic Strategies: A Review of Cross-Domain Heuristic Search Challenge Algorithms

    Mohamad Khairulamirin Md Razali1,*, Masri Ayob2, Abdul Hadi Abd Rahman2, Razman Jarmin3, Chian Yong Liu3, Muhammad Maaya3, Azarinah Izaham3, Graham Kendall4,5

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.2, pp. 1233-1288, 2025, DOI:10.32604/cmes.2025.060481 - 27 January 2025

    Abstract The Cross-domain Heuristic Search Challenge (CHeSC) is a competition focused on creating efficient search algorithms adaptable to diverse problem domains. Selection hyper-heuristics are a class of algorithms that dynamically choose heuristics during the search process. Numerous selection hyper-heuristics have different implementation strategies. However, comparisons between them are lacking in the literature, and previous works have not highlighted the beneficial and detrimental implementation methods of different components. The question is how to effectively employ them to produce an efficient search heuristic. Furthermore, the algorithms that competed in the inaugural CHeSC have not been collectively reviewed. This… More >

  • Open Access

    ARTICLE

    African Bison Optimization Algorithm: A New Bio-Inspired Optimizer with Engineering Applications

    Jian Zhao1,2,*, Kang Wang1,2, Jiacun Wang3,*, Xiwang Guo4, Liang Qi5

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 603-623, 2024, DOI:10.32604/cmc.2024.050523 - 15 October 2024

    Abstract This paper introduces the African Bison Optimization (ABO) algorithm, which is based on biological population. ABO is inspired by the survival behaviors of the African bison, including foraging, bathing, jousting, mating, and eliminating. The foraging behavior prompts the bison to seek a richer food source for survival. When bison find a food source, they stick around for a while by bathing behavior. The jousting behavior makes bison stand out in the population, then the winner gets the chance to produce offspring in the mating behavior. The eliminating behavior causes the old or injured bison to More >

  • Open Access

    ARTICLE

    Q-Learning-Assisted Meta-Heuristics for Scheduling Distributed Hybrid Flow Shop Problems

    Qianyao Zhu1, Kaizhou Gao1,*, Wuze Huang1, Zhenfang Ma1, Adam Slowik2

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 3573-3589, 2024, DOI:10.32604/cmc.2024.055244 - 12 September 2024

    Abstract The flow shop scheduling problem is important for the manufacturing industry. Effective flow shop scheduling can bring great benefits to the industry. However, there are few types of research on Distributed Hybrid Flow Shop Problems (DHFSP) by learning assisted meta-heuristics. This work addresses a DHFSP with minimizing the maximum completion time (Makespan). First, a mathematical model is developed for the concerned DHFSP. Second, four Q-learning-assisted meta-heuristics, e.g., genetic algorithm (GA), artificial bee colony algorithm (ABC), particle swarm optimization (PSO), and differential evolution (DE), are proposed. According to the nature of DHFSP, six local search operations… More >

  • Open Access

    ARTICLE

    Cyberbullying Sexism Harassment Identification by Metaheurustics-Tuned eXtreme Gradient Boosting

    Milos Dobrojevic1,4, Luka Jovanovic1, Lepa Babic3, Miroslav Cajic5, Tamara Zivkovic6, Miodrag Zivkovic2, Suresh Muthusamy7, Milos Antonijevic2, Nebojsa Bacanin2,4,8,9,*

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4997-5027, 2024, DOI:10.32604/cmc.2024.054459 - 12 September 2024

    Abstract Cyberbullying is a form of harassment or bullying that takes place online or through digital devices like smartphones, computers, or tablets. It can occur through various channels, such as social media, text messages, online forums, or gaming platforms. Cyberbullying involves using technology to intentionally harm, harass, or intimidate others and may take different forms, including exclusion, doxing, impersonation, harassment, and cyberstalking. Unfortunately, due to the rapid growth of malicious internet users, this social phenomenon is becoming more frequent, and there is a huge need to address this issue. Therefore, the main goal of the research… More >

  • Open Access

    ARTICLE

    BHJO: A Novel Hybrid Metaheuristic Algorithm Combining the Beluga Whale, Honey Badger, and Jellyfish Search Optimizers for Solving Engineering Design Problems

    Farouq Zitouni1,*, Saad Harous2, Abdulaziz S. Almazyad3, Ali Wagdy Mohamed4,5, Guojiang Xiong6, Fatima Zohra Khechiba1, Khadidja Kherchouche1

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.1, pp. 219-265, 2024, DOI:10.32604/cmes.2024.052001 - 20 August 2024

    Abstract Hybridizing metaheuristic algorithms involves synergistically combining different optimization techniques to effectively address complex and challenging optimization problems. This approach aims to leverage the strengths of multiple algorithms, enhancing solution quality, convergence speed, and robustness, thereby offering a more versatile and efficient means of solving intricate real-world optimization tasks. In this paper, we introduce a hybrid algorithm that amalgamates three distinct metaheuristics: the Beluga Whale Optimization (BWO), the Honey Badger Algorithm (HBA), and the Jellyfish Search (JS) optimizer. The proposed hybrid algorithm will be referred to as BHJO. Through this fusion, the BHJO algorithm aims to… More >

Displaying 1-10 on page 1 of 160. Per Page