Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (17)
  • Open Access

    ARTICLE

    Efficient Resource Management in IoT Network through ACOGA Algorithm

    Pravinkumar Bhujangrao Landge1, Yashpal Singh1, Hitesh Mohapatra2, Seyyed Ahmad Edalatpanah3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.2, pp. 1661-1688, 2025, DOI:10.32604/cmes.2025.065599 - 30 May 2025

    Abstract Internet of things networks often suffer from early node failures and short lifespan due to energy limits. Traditional routing methods are not enough. This work proposes a new hybrid algorithm called ACOGA. It combines Ant Colony Optimization (ACO) and the Greedy Algorithm (GA). ACO finds smart paths while Greedy makes quick decisions. This improves energy use and performance. ACOGA outperforms Hybrid Energy-Efficient (HEE) and Adaptive Lossless Data Compression (ALDC) algorithms. After 500 rounds, only 5% of ACOGA’s nodes are dead, compared to 15% for HEE and 20% for ALDC. The network using ACOGA runs for More >

  • Open Access

    ARTICLE

    Reactive Power Optimization Model of Active Distribution Network with New Energy and Electric Vehicles

    Chenxu Wang*, Jing Bian, Rui Yuan

    Energy Engineering, Vol.122, No.3, pp. 985-1003, 2025, DOI:10.32604/ee.2025.059559 - 07 March 2025

    Abstract Considering the uncertainty of grid connection of electric vehicle charging stations and the uncertainty of new energy and residential electricity load, a spatio-temporal decoupling strategy of dynamic reactive power optimization based on clustering-local relaxation-correction is proposed. Firstly, the k-medoids clustering algorithm is used to divide the reduced power scene into periods. Then, the discrete variables and continuous variables are optimized in the same period of time. Finally, the number of input groups of parallel capacitor banks (CB) in multiple periods is fixed, and then the secondary static reactive power optimization correction is carried out by… More >

  • Open Access

    ARTICLE

    Hybrid Optimization Algorithm for Handwritten Document Enhancement

    Shu-Chuan Chu1, Xiaomeng Yang1, Li Zhang2, Václav Snášel3, Jeng-Shyang Pan1,4,*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3763-3786, 2024, DOI:10.32604/cmc.2024.048594 - 26 March 2024

    Abstract The Gannet Optimization Algorithm (GOA) and the Whale Optimization Algorithm (WOA) demonstrate strong performance; however, there remains room for improvement in convergence and practical applications. This study introduces a hybrid optimization algorithm, named the adaptive inertia weight whale optimization algorithm and gannet optimization algorithm (AIWGOA), which addresses challenges in enhancing handwritten documents. The hybrid strategy integrates the strengths of both algorithms, significantly enhancing their capabilities, whereas the adaptive parameter strategy mitigates the need for manual parameter setting. By amalgamating the hybrid strategy and parameter-adaptive approach, the Gannet Optimization Algorithm was refined to yield the AIWGOA. More >

  • Open Access

    ARTICLE

    An Adaptive Hybrid Optimization Strategy for Resource Allocation in Network Function Virtualization

    Chumei Wen1, Delu Zeng2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.2, pp. 1617-1636, 2024, DOI:10.32604/cmes.2023.029864 - 17 November 2023

    Abstract With the rapid development of Network Function Virtualization (NFV), the problem of low resource utilization in traditional data centers is gradually being addressed. However, existing research does not optimize both local and global allocation of resources in data centers. Hence, we propose an adaptive hybrid optimization strategy that combines dynamic programming and neural networks to improve resource utilization and service quality in data centers. Our approach encompasses a service function chain simulation generator, a parallel architecture service system, a dynamic programming strategy for maximizing the utilization of local server resources, a neural network for predicting More >

  • Open Access

    ARTICLE

    Hybrid Algorithm-Driven Smart Logistics Optimization in IoT-Based Cyber-Physical Systems

    Abdulwahab Ali Almazroi1,*, Nasir Ayub2

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 3921-3942, 2023, DOI:10.32604/cmc.2023.046602 - 26 December 2023

    Abstract Effectively managing complex logistics data is essential for development sustainability and growth, especially in optimizing distribution routes. This article addresses the limitations of current logistics path optimization methods, such as inefficiencies and high operational costs. To overcome these drawbacks, we introduce the Hybrid Firefly-Spotted Hyena Optimization (HFSHO) algorithm, a novel approach that combines the rapid exploration and global search abilities of the Firefly Algorithm (FO) with the localized search and region-exploitation skills of the Spotted Hyena Optimization Algorithm (SHO). HFSHO aims to improve logistics path optimization and reduce operational costs. The algorithm’s effectiveness is systematically… More >

  • Open Access

    ARTICLE

    A Novel Hybrid Optimization Algorithm for Materialized View Selection from Data Warehouse Environments

    Popuri Srinivasarao, Aravapalli Rama Satish*

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 1527-1547, 2023, DOI:10.32604/csse.2023.038951 - 28 July 2023

    Abstract Responding to complex analytical queries in the data warehouse (DW) is one of the most challenging tasks that require prompt attention. The problem of materialized view (MV) selection relies on selecting the most optimal views that can respond to more queries simultaneously. This work introduces a combined approach in which the constraint handling process is combined with metaheuristics to select the most optimal subset of DW views from DWs. The proposed work initially refines the solution to enable a feasible selection of views using the ensemble constraint handling technique (ECHT). The constraints such as self-adaptive… More >

  • Open Access

    ARTICLE

    Hybrid Optimization Algorithm for Resource Allocation in LTE-Based D2D Communication

    Amel Austine*, R. Suji Pramila

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 2263-2276, 2023, DOI:10.32604/csse.2023.032323 - 09 February 2023

    Abstract In a cellular network, direct Device-to-Device (D2D) communication enhances Quality of Service (QoS) in terms of coverage, throughput and amount of power consumed. Since the D2D pairs involve cellular resources for communication, the chances of interference are high. D2D communications demand minimum interference along with maximum throughput and sum rate which can be achieved by employing optimal resources and efficient power allocation procedures. In this research, a hybrid optimization model called Genetic Algorithm-Adaptive Bat Optimization (GA-ABO) algorithm is proposed for efficient resource allocation in a cellular network with D2D communication. Simulation analysis demonstrates that the More >

  • Open Access

    ARTICLE

    An Efficient Hybrid Optimization for Skin Cancer Detection Using PNN Classifier

    J. Jaculin Femil1,*, T. Jaya2

    Computer Systems Science and Engineering, Vol.45, No.3, pp. 2919-2934, 2023, DOI:10.32604/csse.2023.032935 - 21 December 2022

    Abstract The necessity of on-time cancer detection is extremely high in the recent days as it becomes a threat to human life. The skin cancer is considered as one of the dangerous diseases among other types of cancer since it causes severe health impacts on human beings and hence it is highly mandatory to detect the skin cancer in the early stage for providing adequate treatment. Therefore, an effective image processing approach is employed in this present study for the accurate detection of skin cancer. Initially, the dermoscopy images of skin lesions are retrieved and processed… More >

  • Open Access

    ARTICLE

    Hybrid Optimization Based PID Controller Design for Unstable System

    Saranya Rajeshwaran1,*, C. Agees Kumar2, Kanthaswamy Ganapathy3

    Intelligent Automation & Soft Computing, Vol.35, No.2, pp. 1611-1625, 2023, DOI:10.32604/iasc.2023.029299 - 19 July 2022

    Abstract PID controllers play an important function in determining tuning parameters in any process sector to deliver optimal and resilient performance for nonlinear, stable and unstable processes. The effectiveness of the presented hybrid metaheuristic algorithms for a class of time-delayed unstable systems is described in this study when applicable to the problems of PID controller and Smith PID controller. The Direct Multi Search (DMS) algorithm is utilised in this research to combine the local search ability of global heuristic algorithms to tune a PID controller for a time-delayed unstable process model. A Metaheuristics Algorithm such as,… More >

  • Open Access

    ARTICLE

    Optimized ANFIS Model for Stable Clustering in Cognitive Radio Network

    C. Ambhika1,*, C. Murukesh2

    Intelligent Automation & Soft Computing, Vol.35, No.1, pp. 827-838, 2023, DOI:10.32604/iasc.2023.026832 - 06 June 2022

    Abstract With the demand for wireless technology, Cognitive Radio (CR) technology is identified as a promising solution for effective spectrum utilization. Connectivity and robustness are the two main difficulties in cognitive radio networks due to their dynamic nature. These problems are solved by using clustering techniques which group the cognitive users into logical groups. The performance of clustering in cognitive network purely depends on cluster head selection and parameters considered for clustering. In this work, an adaptive neuro-fuzzy inference system (ANFIS) based clustering is proposed for the cognitive network. The performance of ANFIS improved using hybrid More >

Displaying 1-10 on page 1 of 17. Per Page