Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (31)
  • Open Access

    ARTICLE

    Slope Collapse Detection Method Based on Deep Learning Technology

    Xindai An1, Di Wu1,2,*, Xiangwen Xie1, Kefeng Song1

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.2, pp. 1091-1103, 2023, DOI:10.32604/cmes.2022.020670 - 31 August 2022

    Abstract So far, slope collapse detection mainly depends on manpower, which has the following drawbacks: (1) low reliability, (2) high risk of human safe, (3) high labor cost. To improve the efficiency and reduce the human investment of slope collapse detection, this paper proposes an intelligent detection method based on deep learning technology for the task. In this method, we first use the deep learning-based image segmentation technology to find the slope area from the captured scene image. Then the foreground motion detection method is used for detecting the motion of the slope area. Finally, we More >

  • Open Access

    ARTICLE

    Fine-grained Ship Image Recognition Based on BCNN with Inception and AM-Softmax

    Zhilin Zhang1, Ting Zhang1, Zhaoying Liu1,*, Peijie Zhang1, Shanshan Tu1, Yujian Li2, Muhammad Waqas3

    CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 1527-1539, 2022, DOI:10.32604/cmc.2022.029297 - 18 May 2022

    Abstract The fine-grained ship image recognition task aims to identify various classes of ships. However, small inter-class, large intra-class differences between ships, and lacking of training samples are the reasons that make the task difficult. Therefore, to enhance the accuracy of the fine-grained ship image recognition, we design a fine-grained ship image recognition network based on bilinear convolutional neural network (BCNN) with Inception and additive margin Softmax (AM-Softmax). This network improves the BCNN in two aspects. Firstly, by introducing Inception branches to the BCNN network, it is helpful to enhance the ability of extracting comprehensive features… More >

  • Open Access

    ARTICLE

    Design of Higher Order Matched FIR Filter Using Odd and Even Phase Process

    V. Magesh1,*, N. Duraipandian2

    Intelligent Automation & Soft Computing, Vol.31, No.3, pp. 1499-1510, 2022, DOI:10.32604/iasc.2022.020552 - 09 October 2021

    Abstract The current research paper discusses the implementation of higher order-matched filter design using odd and even phase processes for efficient area and time delay reduction. Matched filters are widely used tools in the recognition of specified task. When higher order taps are implemented upon the transposed form of matched filters, it can enhance the image recognition application and its performance in terms of identification and accuracy. The proposed method i.e., odd and even phases’ process of FIR filter can reduce the number of multipliers and adders, used in existing system. The main advantage of using… More >

  • Open Access

    ARTICLE

    Realization of Mobile Augmented Reality System Based on Image Recognition

    Shanshan Liu1, Yukun Cao1, Lu Gao1, Jian Xu1,2,*, Wu Zeng1,2

    Journal of Information Hiding and Privacy Protection, Vol.3, No.2, pp. 55-59, 2021, DOI:10.32604/jihpp.2021.017254 - 30 July 2021

    Abstract With the development of computation technology, the augmented reality (AR) is widely applied in many fields as well as the image recognition. However, the AR application on mobile platform is not developed enough in the past decades due to the capability of the mobile processors. In recent years, the performance of mobile processors has changed rapidly, which makes it comparable to the desktop processors. This paper proposed and realized an AR system to be used on the Android mobile platform based on the image recognition through EasyAR engine and Unity 3D development tools. In this More >

  • Open Access

    ARTICLE

    Generation of Synthetic Images of Randomly Stacked Object Scenes for Network Training Applications

    Yajun Zhang1,*, Jianjun Yi1, Jiahao Zhang1, Yuanhao Chen1, Liang He2

    Intelligent Automation & Soft Computing, Vol.27, No.2, pp. 425-439, 2021, DOI:10.32604/iasc.2021.013795 - 18 January 2021

    Abstract Image recognition algorithms based on deep learning have been widely developed in recent years owing to their capability of automatically capturing recognition features from image datasets and constantly improving the accuracy and efficiency of the image recognition process. However, the task of training deep learning networks is time-consuming and expensive because large training datasets are generally required, and extensive manpower is needed to annotate each of the images in the training dataset to support the supervised learning process. This task is particularly arduous when the image scenes involve randomly stacked objects. The present work addresses… More >

  • Open Access

    ARTICLE

    Intelligent Prediction Approach for Diabetic Retinopathy Using Deep Learning Based Convolutional Neural Networks Algorithm by Means of Retina Photographs

    G. Arun Sampaul Thomas1, Y. Harold Robinson2, E. Golden Julie3, Vimal Shanmuganathan4, Seungmin Rho5, Yunyoung Nam6,*

    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1613-1629, 2021, DOI:10.32604/cmc.2020.013443 - 26 November 2020

    Abstract Retinopathy is a human eye disease that causes changes in retinal blood vessels that leads to bleed, leak fluid and vision impairment. Symptoms of retinopathy are blurred vision, changes in color perception, red spots, and eye pain and it cannot be detected with a naked eye. In this paper, a new methodology based on Convolutional Neural Networks (CNN) is developed and proposed to intelligent retinopathy prediction and give a decision about the presence of retinopathy with automatic diabetic retinopathy screening with accurate diagnoses. The CNN model is trained by different images of eyes that have More >

  • Open Access

    ARTICLE

    Image Recognition of Citrus Diseases Based on Deep Learning

    Zongshuai Liu1, Xuyu Xiang1,2,*, Jiaohua Qin1, Yun Tan1, Qin Zhang1, Neal N. Xiong3

    CMC-Computers, Materials & Continua, Vol.66, No.1, pp. 457-466, 2021, DOI:10.32604/cmc.2020.012165 - 30 October 2020

    Abstract In recent years, with the development of machine learning and deep learning, it is possible to identify and even control crop diseases by using electronic devices instead of manual observation. In this paper, an image recognition method of citrus diseases based on deep learning is proposed. We built a citrus image dataset including six common citrus diseases. The deep learning network is used to train and learn these images, which can effectively identify and classify crop diseases. In the experiment, we use MobileNetV2 model as the primary network and compare it with other network models More >

  • Open Access

    ARTICLE

    An Improved Deep Fusion CNN for Image Recognition

    Rongyu Chen1, Lili Pan1, *, Cong Li1, Yan Zhou1, Aibin Chen1, Eric Beckman2

    CMC-Computers, Materials & Continua, Vol.65, No.2, pp. 1691-1706, 2020, DOI:10.32604/cmc.2020.011706 - 20 August 2020

    Abstract With the development of Deep Convolutional Neural Networks (DCNNs), the extracted features for image recognition tasks have shifted from low-level features to the high-level semantic features of DCNNs. Previous studies have shown that the deeper the network is, the more abstract the features are. However, the recognition ability of deep features would be limited by insufficient training samples. To address this problem, this paper derives an improved Deep Fusion Convolutional Neural Network (DF-Net) which can make full use of the differences and complementarities during network learning and enhance feature expression under the condition of limited… More >

  • Open Access

    ARTICLE

    An Efficient Bar Code Image Recognition Algorithm for Sorting System

    Desheng Zheng1, *, Ziyong Ran1, Zhifeng Liu1, Liang Li2, Lulu Tian3

    CMC-Computers, Materials & Continua, Vol.64, No.3, pp. 1885-1895, 2020, DOI:10.32604/cmc.2020.010070 - 30 June 2020

    Abstract In the sorting system of the production line, the object movement, fixed angle of view, light intensity and other reasons lead to obscure blurred images. It results in bar code recognition rate being low and real time being poor. Aiming at the above problems, a progressive bar code compressed recognition algorithm is proposed. First, assuming that the source image is not tilted, use the direct recognition method to quickly identify the compressed source image. Failure indicates that the compression ratio is improper or the image is skewed. Then, the source image is enhanced to identify More >

  • Open Access

    ARTICLE

    Image Recognition of Breast Tumor Proliferation Level Based on Convolution Neural Network

    Junhao Yang1, Chunxiao Chen1,*, Qingyang Zang1, Jianfei Li1

    Molecular & Cellular Biomechanics, Vol.15, No.4, pp. 203-214, 2018, DOI:10.32604/mcb.2018.03824

    Abstract Pathological slide is increasingly applied in the diagnosis of breast tumors despite the issues of large amount of data, slow viewing and high subjectivity. To overcome these problems, a micrograph recognition method based on convolutional neural network is proposed for pathological slide of breast tumor. Combined with multi-channel threshold and watershed segmentation, a sample database including single cell, adhesive cell and invalid cell was established. Then, the convolution neural network with six layers is constructed, which has ability to classify the stained breast tumor cells with accuracy of more than 90%, and evaluate the proliferation More >

Displaying 21-30 on page 3 of 31. Per Page