Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (14)
  • Open Access

    ARTICLE

    Energy Efficiency and Total Mission Completion Time Tradeoff in Multiple UAVs-Mounted IRS-Assisted Data Collection System

    Hong Zhao, Hongbin Chen*, Zhihui Guo, Ling Zhan, Shichao Li

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-25, 2026, DOI:10.32604/cmc.2025.072776 - 09 December 2025

    Abstract UAV-mounted intelligent reflecting surface (IRS) helps address the line-of-sight (LoS) blockage between sensor nodes (SNs) and the fusion center (FC) in Internet of Things (IoT). This paper considers an IoT assisted by multiple UAVs-mounted IRS (U-IRS), where the data from ground SNs are transmitted to the FC. In practice, energy efficiency (EE) and mission completion time are crucial metrics for evaluating system performance and operational costs. Recognizing their importance during data collection, we formulate a multi-objective optimization problem to maximize EE and minimize total mission completion time simultaneously. To characterize this tradeoff while considering optimization… More >

  • Open Access

    ARTICLE

    System Modeling and Deep Learning-Based Security Analysis of Uplink NOMA Relay Networks with IRS and Fountain Codes

    Phu Tran Tin1, Minh-Sang Van Nguyen2, Quy-Anh Bui1, Agbotiname Lucky Imoize3, Byung-Seo Kim4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.2, pp. 2521-2543, 2025, DOI:10.32604/cmes.2025.066669 - 31 August 2025

    Abstract Digital content such as games, extended reality (XR), and movies has been widely and easily distributed over wireless networks. As a result, unauthorized access, copyright infringement by third parties or eavesdroppers, and cyberattacks over these networks have become pressing concerns. Therefore, protecting copyrighted content and preventing illegal distribution in wireless communications has garnered significant attention. The Intelligent Reflecting Surface (IRS) is regarded as a promising technology for future wireless and mobile networks due to its ability to reconfigure the radio propagation environment. This study investigates the security performance of an uplink Non-Orthogonal Multiple Access (NOMA)… More >

  • Open Access

    ARTICLE

    UAV-Assisted Multi-Object Computing Offloading for Blockchain-Enabled Vehicle-to-Everything Systems

    Ting Chen1, Shujiao Wang2, Xin Fan3,*, Xiujuan Zhang2, Chuanwen Luo3, Yi Hong3

    CMC-Computers, Materials & Continua, Vol.81, No.3, pp. 3927-3950, 2024, DOI:10.32604/cmc.2024.056961 - 19 December 2024

    Abstract This paper investigates an unmanned aerial vehicle (UAV)-assisted multi-object offloading scheme for blockchain-enabled Vehicle-to-Everything (V2X) systems. Due to the presence of an eavesdropper (Eve), the system’s communication links may be insecure. This paper proposes deploying an intelligent reflecting surface (IRS) on the UAV to enhance the communication performance of mobile vehicles, improve system flexibility, and alleviate eavesdropping on communication links. The links for uploading task data from vehicles to a base station (BS) are protected by IRS-assisted physical layer security (PLS). Upon receiving task data, the computing resources provided by the edge computing servers (MEC)… More >

  • Open Access

    ARTICLE

    Energy Efficiency Maximization in Mobile Edge Computing Networks via IRS assisted UAV Communications

    Ying Zhang1, Weiming Niu2, Supu Xiu1,3, Guangchen Mu3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.2, pp. 1865-1884, 2024, DOI:10.32604/cmes.2023.030114 - 17 November 2023

    Abstract In this paper, we investigate the energy efficiency maximization for mobile edge computing (MEC) in intelligent reflecting surface (IRS) assisted unmanned aerial vehicle (UAV) communications. In particular, UAV can collect the computing tasks of the terrestrial users and transmit the results back to them after computing. We jointly optimize the users’ transmitted beamforming and uploading ratios, the phase shift matrix of IRS, and the UAV trajectory to improve the energy efficiency. The formulated optimization problem is highly non-convex and difficult to be solved directly. Therefore, we decompose the original problem into three sub-problems. We first More >

  • Open Access

    ARTICLE

    IRS Assisted UAV Communications against Proactive Eavesdropping in Mobile Edge Computing Networks

    Ying Zhang1,*, Weiming Niu2, Leibing Yan1

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 885-902, 2024, DOI:10.32604/cmes.2023.029234 - 22 September 2023

    Abstract In this paper, we consider mobile edge computing (MEC) networks against proactive eavesdropping. To maximize the transmission rate, IRS assisted UAV communications are applied. We take the joint design of the trajectory of UAV, the transmitting beamforming of users, and the phase shift matrix of IRS. The original problem is strong non-convex and difficult to solve. We first propose two basic modes of the proactive eavesdropper, and obtain the closed-form solution for the boundary conditions of the two modes. Then we transform the original problem into an equivalent one and propose an alternating optimization (AO) More >

  • Open Access

    ARTICLE

    Resource Allocation for IRS Assisted mmWave Wireless Powered Sensor Networks with User Cooperation

    Yonghui Lin1, Zhengyu Zhu2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 663-677, 2024, DOI:10.32604/cmes.2023.028584 - 22 September 2023

    Abstract In this paper, we investigate IRS-aided user cooperation (UC) scheme in millimeter wave (mmWave) wireless-powered sensor networks (WPSN), where two single-antenna users are wireless powered in the wireless energy transfer (WET) phase first and then cooperatively transmit information to a hybrid access point (AP) in the wireless information transmission (WIT) phase, following which the IRS is deployed to enhance the system performance of the WET and WIT. We maximized the weighted sum-rate problem by jointly optimizing the transmit time slots, power allocations, and the phase shifts of the IRS. Due to the non-convexity of the More >

  • Open Access

    ARTICLE

    Fairness-Aware Harvested Energy Efficiency Algorithm for IRS-Aided Intelligent Sensor Networks with SWIPT

    Yingying Chen1, Weiqiang Tan2, Shidang Li3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.3, pp. 2675-2691, 2023, DOI:10.32604/cmes.2023.028533 - 03 August 2023

    Abstract In this paper, a novel fairness-aware harvested energy efficiency-based green transmission scheme for wireless information and power transfer (SWIPT) aided sensor networks is developed for active beamforming of multiantenna transmitter and passive beamforming at intelligent reflecting surfaces (IRS). By optimizing the active beamformer assignment at the transmitter in conjunction with the passive beamformer assignment at the IRS, we aim to maximize the minimum harvested energy efficiency among all the energy receivers (ER) where information receivers (IR) are bound to the signal-interference-noise-ratio (SINR) and the maximum transmitted power of the transmitter. To handle the non-convex problem, More >

  • Open Access

    ARTICLE

    Secrecy Efficiency Maximization in Intelligent Reflective Surfaces Assisted UAV Communications

    Hui Wei, Leibing Yan*

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.2, pp. 1805-1824, 2023, DOI:10.32604/cmes.2023.028072 - 26 June 2023

    Abstract This paper focuses on the secrecy efficiency maximization in intelligent reflecting surface (IRS) assisted unmanned aerial vehicle (UAV) communication. With the popularization of UAV technology, more and more communication scenarios need UAV support. We consider using IRS to improve the secrecy efficiency. Specifically, IRS and UAV trajectories work together to counter potential eavesdroppers, while balancing the secrecy rate and energy consumption. The original problem is difficult to solve due to the coupling of optimization variables. We first introduce secrecy efficiency as an auxiliary variable and propose relaxation optimization problem, and then prove the equivalence between More >

  • Open Access

    ARTICLE

    Outage Behaviors of Active Intelligent Reflecting Surface Enabled NOMA Communications

    Zhiping Lu1, Xinwei Yue2,*, Shuo Chen2, Weiguo Ma1

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.1, pp. 789-812, 2023, DOI:10.32604/cmes.2023.027663 - 23 April 2023

    Abstract Active intelligent reflecting surface (IRS) is a novel and promising technology that is able to overcome the multiplicative fading introduced by passive IRS. In this paper, we consider the application of active IRS to non-orthogonal multiple access (NOMA) networks, where the incident signals are amplified actively through integrating amplifier to reflecting elements. More specifically, the performance of active/passive IRS-NOMA networks is investigated over large and small-scale fading channels. Aiming to characterize the performance of active IRS-NOMA networks, the exact and asymptotic expressions of outage probability for a couple of users, i.e., near-end user and far-end… More >

  • Open Access

    ARTICLE

    Performance Analysis of Intelligent Reflecting Surface Assisted Wireless Communication System

    Weiqiang Tan1,*, Quanquan Zhou1, Weijie Tan2, Longcheng Yang3, Chunguo Li4

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.1, pp. 775-787, 2023, DOI:10.32604/cmes.2023.027427 - 23 April 2023

    Abstract In this paper, we investigate the end-to-end performance of intelligent reflecting surface (IRS)-assisted wireless communication systems. We consider a system in which an IRS is deployed on a uniform planar array (UPA) configuration, including a large number of reflecting elements, where the transmitters and receivers are only equipped with a single antenna. Our objective is to analytically obtain the achievable ergodic rate, outage probability, and bit error rate (BER) of the system. Furthermore, to maximize the system’s signal-to-noise ratio (SNR), we design the phase shift of each reflecting element and derive the optimal reflection phase… More > Graphic Abstract

    Performance Analysis of Intelligent Reflecting Surface Assisted Wireless Communication System

Displaying 1-10 on page 1 of 14. Per Page