Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (885)
  • Open Access

    REVIEW

    Comprehensive Analysis of IoT Security: Threats, Detection Methods, and Defense Strategies

    Akhila Reddy Yadulla, Mounica Yenugula, Vinay Kumar Kasula*, Bhargavi Konda, Bala Yashwanth Reddy Thumma

    Journal on Internet of Things, Vol.7, pp. 19-48, 2025, DOI:10.32604/jiot.2025.062733 - 11 July 2025

    Abstract This study systematically reviews the Internet of Things (IoT) security research based on literature from prominent international cybersecurity conferences over the past five years, including ACM Conference on Computer and Communications Security (ACM CCS), USENIX Security, Network and Distributed System Security Symposium (NDSS), and IEEE Symposium on Security and Privacy (IEEE S&P), along with other high-impact studies. It organizes and analyzes IoT security advancements through the lenses of threats, detection methods, and defense strategies. The foundational architecture of IoT systems is first outlined, followed by categorizing major threats into eight distinct types and analyzing their More >

  • Open Access

    ARTICLE

    Privacy Preserving Federated Anomaly Detection in IoT Edge Computing Using Bayesian Game Reinforcement Learning

    Fatima Asiri1, Wajdan Al Malwi1, Fahad Masood2, Mohammed S. Alshehri3, Tamara Zhukabayeva4, Syed Aziz Shah5, Jawad Ahmad6,*

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 3943-3960, 2025, DOI:10.32604/cmc.2025.066498 - 03 July 2025

    Abstract Edge computing (EC) combined with the Internet of Things (IoT) provides a scalable and efficient solution for smart homes. The rapid proliferation of IoT devices poses real-time data processing and security challenges. EC has become a transformative paradigm for addressing these challenges, particularly in intrusion detection and anomaly mitigation. The widespread connectivity of IoT edge networks has exposed them to various security threats, necessitating robust strategies to detect malicious activities. This research presents a privacy-preserving federated anomaly detection framework combined with Bayesian game theory (BGT) and double deep Q-learning (DDQL). The proposed framework integrates BGT… More >

  • Open Access

    ARTICLE

    Adversarial Perturbation for Sensor Data Anonymization: Balancing Privacy and Utility

    Tatsuhito Hasegawa#,*, Kyosuke Fujino#

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 2429-2454, 2025, DOI:10.32604/cmc.2025.066270 - 03 July 2025

    Abstract Recent advances in wearable devices have enabled large-scale collection of sensor data across healthcare, sports, and other domains but this has also raised critical privacy concerns, especially under tightening regulations such as the General Data Protection Regulation (GDPR), which explicitly restrict the processing of data that can re-identify individuals. Although existing anonymization approaches such as the Anonymizing AutoEncoder (AAE) can reduce the risk of re-identification, they often introduce substantial waveform distortions and fail to preserve information beyond a single classification task (e.g., human activity recognition). This study proposes a novel sensor data anonymization method based… More >

  • Open Access

    ARTICLE

    IoT-Based Real-Time Medical-Related Human Activity Recognition Using Skeletons and Multi-Stage Deep Learning for Healthcare

    Subrata Kumer Paul1,2, Abu Saleh Musa Miah3,4, Rakhi Rani Paul1,2, Md. Ekramul Hamid2, Jungpil Shin4,*, Md Abdur Rahim5

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 2513-2530, 2025, DOI:10.32604/cmc.2025.063563 - 03 July 2025

    Abstract The Internet of Things (IoT) and mobile technology have significantly transformed healthcare by enabling real-time monitoring and diagnosis of patients. Recognizing Medical-Related Human Activities (MRHA) is pivotal for healthcare systems, particularly for identifying actions critical to patient well-being. However, challenges such as high computational demands, low accuracy, and limited adaptability persist in Human Motion Recognition (HMR). While some studies have integrated HMR with IoT for real-time healthcare applications, limited research has focused on recognizing MRHA as essential for effective patient monitoring. This study proposes a novel HMR method tailored for MRHA detection, leveraging multi-stage deep… More >

  • Open Access

    ARTICLE

    Comprehensive Black-Box Fuzzing of Electric Vehicle Charging Firmware via a Vehicle to Grid Network Protocol Based on State Machine Path

    Yu-Bin Kim, Dong-Hyuk Shin, Ieck-Chae Euom*

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 2217-2243, 2025, DOI:10.32604/cmc.2025.063289 - 03 July 2025

    Abstract The global surge in electric vehicle (EV) adoption is proportionally expanding the EV charging station (EVCS) infrastructure, thereby increasing the attack surface and potential impact of security breaches within this critical ecosystem. While ISO 15118 standardizes EV-EVCS communication, its underspecified security guidelines and the variability in manufacturers’ implementations frequently result in vulnerabilities that can disrupt charging services, compromise user data, or affect power grid stability. This research introduces a systematic black-box fuzzing methodology, accompanied by an open-source tool, to proactively identify and mitigate such security flaws in EVCS firmware operating under ISO 15118. The proposed… More >

  • Open Access

    ARTICLE

    Enhancing Healthcare Data Privacy in Cloud IoT Networks Using Anomaly Detection and Optimization with Explainable AI (ExAI)

    Jitendra Kumar Samriya1, Virendra Singh2, Gourav Bathla3, Meena Malik4, Varsha Arya5,6, Wadee Alhalabi7, Brij B. Gupta8,9,10,11,*

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 3893-3910, 2025, DOI:10.32604/cmc.2025.063242 - 03 July 2025

    Abstract The integration of the Internet of Things (IoT) into healthcare systems improves patient care, boosts operational efficiency, and contributes to cost-effective healthcare delivery. However, overcoming several associated challenges, such as data security, interoperability, and ethical concerns, is crucial to realizing the full potential of IoT in healthcare. Real-time anomaly detection plays a key role in protecting patient data and maintaining device integrity amidst the additional security risks posed by interconnected systems. In this context, this paper presents a novel method for healthcare data privacy analysis. The technique is based on the identification of anomalies in… More >

  • Open Access

    ARTICLE

    Enhancing IoT Resilience at the Edge: A Resource-Efficient Framework for Real-Time Anomaly Detection in Streaming Data

    Kirubavathi G.1,*, Arjun Pulliyasseri1, Aswathi Rajesh1, Amal Ajayan1, Sultan Alfarhood2,*, Mejdl Safran2, Meshal Alfarhood2, Jungpil Shin3

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.3, pp. 3005-3031, 2025, DOI:10.32604/cmes.2025.065698 - 30 June 2025

    Abstract The exponential expansion of the Internet of Things (IoT), Industrial Internet of Things (IIoT), and Transportation Management of Things (TMoT) produces vast amounts of real-time streaming data. Ensuring system dependability, operational efficiency, and security depends on the identification of anomalies in these dynamic and resource-constrained systems. Due to their high computational requirements and inability to efficiently process continuous data streams, traditional anomaly detection techniques often fail in IoT systems. This work presents a resource-efficient adaptive anomaly detection model for real-time streaming data in IoT systems. Extensive experiments were carried out on multiple real-world datasets, achieving… More >

  • Open Access

    ARTICLE

    Port-Based Pre-Authentication Message Transmission Scheme

    Sunghyun Yu, Yoojae Won*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.3, pp. 3943-3980, 2025, DOI:10.32604/cmes.2025.064997 - 30 June 2025

    Abstract Pre-Authentication and Post-Connection (PAPC) plays a crucial role in realizing the Zero Trust security model by ensuring that access to network resources is granted only after successful authentication. While earlier approaches such as Port Knocking (PK) and Single Packet Authorization (SPA) introduced pre-authentication concepts, they suffer from limitations including plaintext communication, protocol dependency, reliance on dedicated clients, and inefficiency under modern network conditions. These constraints hinder their applicability in emerging distributed and resource-constrained environments such as AIoT and browser-based systems. To address these challenges, this study proposes a novel port-sequence-based PAPC scheme structured as a… More >

  • Open Access

    ARTICLE

    A Hybrid Wasserstein GAN and Autoencoder Model for Robust Intrusion Detection in IoT

    Mohammed S. Alshehri1,*, Oumaima Saidani2, Wajdan Al Malwi3, Fatima Asiri3, Shahid Latif 4, Aizaz Ahmad Khattak5, Jawad Ahmad6

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.3, pp. 3899-3920, 2025, DOI:10.32604/cmes.2025.064874 - 30 June 2025

    Abstract The emergence of Generative Adversarial Network (GAN) techniques has garnered significant attention from the research community for the development of Intrusion Detection Systems (IDS). However, conventional GAN-based IDS models face several challenges, including training instability, high computational costs, and system failures. To address these limitations, we propose a Hybrid Wasserstein GAN and Autoencoder Model (WGAN-AE) for intrusion detection. The proposed framework leverages the stability of WGAN and the feature extraction capabilities of the Autoencoder Model. The model was trained and evaluated using two recent benchmark datasets, 5GNIDD and IDSIoT2024. When trained on the 5GNIDD dataset,… More >

  • Open Access

    ARTICLE

    Immune landscape of neoadjuvant chemoradiotherapy: involvement of MAL, a T-cell differentiation protein

    KOSEI NAKAJIMA1,2,3,*, YOSHINORI INO1

    Oncology Research, Vol.33, No.7, pp. 1769-1779, 2025, DOI:10.32604/or.2025.063419 - 26 June 2025

    Abstract Background: Neoadjuvant/preoperative therapy (NAT) involves the administration of chemotherapy, with or without radiation, prior to surgical resection. This approach is commonly used for locally advanced tumors to reduce tumor volume, improve resectability, and minimize the need for extensive surgical procedures. While NAT has been shown to be effective in inducing local anti-tumor immunity in potentially resectable solid tumors, the underlying molecular mechanisms remain poorly understood. Methods: Cohort samples from pancreatic cancer patients who underwent NAT (n = 26) and those who did not (n = 20) were analyzed. Changes in the immune microenvironment induced by… More >

Displaying 1-10 on page 1 of 885. Per Page