Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (7)
  • Open Access


    Optimization of Gas-Flooding Fracturing Development in Ultra-Low Permeability Reservoirs

    Lifeng Liu1, Menghe Shi2, Jianhui Wang3, Wendong Wang2,*, Yuliang Su2, Xinyu Zhuang2

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.3, pp. 595-607, 2024, DOI:10.32604/fdmp.2023.041962

    Abstract Ultra-low permeability reservoirs are characterized by small pore throats and poor physical properties, which are at the root of well-known problems related to injection and production. In this study, a gas injection flooding approach is analyzed in the framework of numerical simulations. In particular, the sequence and timing of fracture channeling and the related impact on production are considered for horizontal wells with different fracture morphologies. Useful data and information are provided about the regulation of gas channeling and possible strategies to delay gas channeling and optimize the gas injection volume and fracture parameters. It is shown that in order… More >

  • Open Access


    Pilot Test for Nitrogen Foam Flooding in Low Permeability Reservoir

    Xinyu Zhou1,2, Jia Huang1,2, Yuchen Qian1,2, Wenli Luo1,2, Lisha Qi3, Jie Wang3, Zhibin Jiang3, Hao Kang4,*

    Energy Engineering, Vol.120, No.3, pp. 763-774, 2023, DOI:10.32604/ee.2023.025893


    Due to the characteristics of reservoir formation, the producing level of low permeability reservoir is relatively very low. It is hard to obtain high recovery through conventional development schemes. Considering the tight matrix, complex fracture system, low production level of producers, and low recovery factor of M block in Xinjiang oilfield, it is selected for on-site pilot test of nitrogen foam flooding. Detailed flooding scheme is made and the test results are evaluated respectively both for producers and injectors. The pressure index, filling degree, and fluid injection profile are found to be all improved in injectors after injection of nitrogen… More >

  • Open Access


    Numerical Simulation of Vacuum Preloading for Chemically Conditioned Municipal Sludge

    Wenwei Li1, Xinjie Zhan2,*, Baotian Wang1, Jinyu Zuo1

    Journal of Renewable Materials, Vol.11, No.1, pp. 363-378, 2023, DOI:10.32604/jrm.2022.022254

    Abstract Municipal sludge is a sedimentation waste produced during the wastewater process in sewage treatment plants. Among recent studies, pilot and field tests showed that chemical conditioning combined with vacuum preloading can effectively treat municipal sludge. To further understand the drainage and consolidation characteristics of the conditioning sludge during vacuum preloading, a large deformation nonlinear numerical simulation model based on the equal strain condition was developed to simulate and analyze the pilot and field tests, whereas the simulation results were not satisfactory. The results of the numerical analysis of the pilot test showed that the predicted consolidation degree was greater than… More >

  • Open Access


    Numerical Simulation of a Two-Phase Flow with Low Permeability and a Start-Up Pressure Gradient

    Xuanyu Dong1,*, Jingyao Yang2

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.1, pp. 175-185, 2023, DOI:10.32604/fdmp.2022.021345

    Abstract A new numerical model for low-permeability reservoirs is developed. The model incorporates the nonlinear characteristics of oil-water two-phase flows while taking into account the initiation pressure gradient. Related numerical solutions are obtained using a finite difference method. The correctness of the method is demonstrated using a two-dimensional inhomogeneous low permeability example. Then, the differences in the cumulative oil and water production are investigated for different starting water saturations. It is shown that when the initial water saturation grows, the water content of the block continues to rise and the cumulative oil production gradually decreases. More >

  • Open Access


    On the Development of an Effective Pressure Driving System for Ultra-Low Permeability Reservoirs

    Yapu Zhang1,2, Zhengming Yang1,2, Dajian Li3, Xuewei Liu1, Xinli Zhao1,2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.17, No.6, pp. 1067-1075, 2021, DOI:10.32604/fdmp.2021.016725

    Abstract Given its relevance to the exploitation of ultra-low permeability reservoirs, which account for a substantial proportion of the world’s exploited and still unexploited reserves, in the present study the development of an adequate water injection system is considered. Due to the poor properties and weak seepage capacity of these reservoirs, the water injection pressure typically increases continuously during water flooding. In this research, the impact on such a process of factors as permeability, row spacing, and pressure gradient is evaluated experimentally using a high-pressure large-scale outcrop model. On this basis, a comprehensive evaluation coefficient is introduced able to account for… More >

  • Open Access


    Study on the Variation Rule of Produced Oil Components during CO2 Flooding in Low Permeability Reservoirs

    Ganggang Hou1, Tongjing Liu1, *, Xinyu Yuan1, Jirui Hou1, Pengxiang Diwu2

    CMES-Computer Modeling in Engineering & Sciences, Vol.123, No.3, pp. 1223-1246, 2020, DOI:10.32604/cmes.2020.09008

    Abstract CO2 flooding has been widely studied and applied to improve oil recovery from low permeability reservoirs. Both the experimental results and the oilfield production data indicate that produced oil components (POC) will vary during CO2 flooding in low permeability reservoirs. However, the present researches fail to explain the variation reason and rule. In this study, the physical model of the POC variation during CO2 flooding in low permeability reservoir was established, and the variation reason and rule were defined. To verify the correctness of the physical model, the interaction rule of the oil-CO2 system was studied by related experiments. The… More >

  • Open Access


    Experimental Investigation on the Pressure Propagation Mechanism of Tight Reservoirs

    Jing Sun1,2,3,*, Dehua Liu1,2,3, Xiang Zhu1,2,3, Wenjun Huang1,2,3, Liang Cheng1,2,3

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.3, pp. 425-440, 2020, DOI:10.32604/fdmp.2020.08531

    Abstract Low permeability tight sandstone reservoirs have a high filtrational resistance and a very low fluid flow rate. As a result, the propagation speed of the formation pressure is low and fluid flow behaves as a non-Darcy flow, which typically displays a highly non-linear behavior. In this paper, the characteristics and mechanism of pressure propagation in this kind of reservoir are revealed through a laboratory pressure propagation experiment and through data from an actual tight reservoir development. The main performance mechanism is as follows: A new pressure cage concept is proposed based on the pressure variation characteristics of the laboratory experiments.… More >

Displaying 1-10 on page 1 of 7. Per Page