Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (106)
  • Open Access

    ARTICLE

    Three Dimensional Modeling of Ge0.98Si0.02Crystal Growth Conducted on board FOTON-M2 in the Presence of Rotating Magnetic Field

    M.M. Shemirani1, M.Z. Saghir2

    FDMP-Fluid Dynamics & Materials Processing, Vol.5, No.3, pp. 211-230, 2009, DOI:10.3970/fdmp.2009.005.211

    Abstract A three-dimensional numerical modeling of Ge0.98Si0.02crystal growth is conducted to investigate the effect of g-jitter along with rotating magnetic field on the heat and mass transfer in the solvent region. It was found that the speed in the flow under the low frequency g-jitter is in the nano-centimeter per second and is too weak to have any impact on the silicon concentration in the process of crystallization near the growth interface. Different magnetic field intensities for different rotational speeds were examined. It was also found that rotating magnetic field not only did not suppress the More >

  • Open Access

    ABSTRACT

    Nonlinear Vibration Analysis of a Fluid-Loaded Plate in Magnetic Field

    T-P. Chang1, M-F. Liu2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.5, No.1, pp. 35-40, 2008, DOI:10.3970/icces.2008.005.035

    Abstract In the present study, we perform the non-linear vibration analysis of an elastic plate subjected to weak fluid loading in an inclined magnetic field. The structural nonlinearity, fluid nonlinearity, and the effects of magnetic field are all incorporated in the formulations to derive the governing equation of the plate. The method of multiple scales is adopted to determine the eigenvalues and mode shapes of the linear vibration, and then the amplitude of the nonlinear vibration response of the plate is calculated. Based on the assumptions of ordering and formulations of multiple scales, it can be… More >

  • Open Access

    ARTICLE

    A Study of Boundary Conditions in the Meshless Local Petrov-Galerkin (MLPG) Method for Electromagnetic Field Computations

    Meiling Zhao1, Yufeng Nie2

    CMES-Computer Modeling in Engineering & Sciences, Vol.37, No.2, pp. 97-112, 2008, DOI:10.3970/cmes.2008.037.097

    Abstract Meshless local Petrov-Galerkin (MLPG) method is successfully applied for electromagnetic field computations. The moving least square technique is used to interpolate the trial and test functions. More attention is paid to imposing the essential boundary conditions of electromagnetic equations. A new coupled meshless local Petrov-Galerkin and finite element (MLPG-FE) method is presented to enforce the essential boundary conditions. Unlike the conventional coupled technique, this approach can ensure the smooth blending of the potential variables as well as their derivatives in the transition region between the meshless and finite element domains. Then the boundary singular weight More >

  • Open Access

    ARTICLE

    Large-Scale Parallel Finite Element Analyses of High Frequency Electromagnetic Field in Commuter Trains

    A. Takei1, S. Yoshimura1, H. Kanayama2

    CMES-Computer Modeling in Engineering & Sciences, Vol.31, No.1, pp. 13-24, 2008, DOI:10.3970/cmes.2008.031.013

    Abstract This paper presents large-scale finite element analyses of high frequency electromagnetic fields in commuter trains. The ADVENTURE_Magnetic is one of the main modules of the ADVENTURE system, which is an open source parallel finite element analyses system, and is able to solve eddy current and magnetostatic problems using the hierarchical domain decomposition method (HDDM) with an iterative linear algebraic solver. In this paper, we improve the module so as to solve a high frequency electromagnetic field of 500-1000 M[Hz]. A stationary Helmholtz equation for electromagnetic wave problems is solved taking an electric field as an More >

  • Open Access

    ARTICLE

    Numerical Computation of Electromagnetic Fields by the Time-Domain Boundary Element Method and the Complex Variable Method

    D. Soares Jr.1, M. P. Vinagre2

    CMES-Computer Modeling in Engineering & Sciences, Vol.25, No.1, pp. 1-8, 2008, DOI:10.3970/cmes.2008.025.001

    Abstract This work presents an alternative procedure to compute time-domain electromagnetic fields. The Boundary Element Method is here adopted to numerically analyze wave propagation problems, computing just a so-called primary field (either the electric or the magnetic field can be selected as primary field; the complementary field is here named secondary field). The secondary field is obtained following Maxwell's equations, i.e., considering space derivatives of the primary field (computed by the Complex Variable Method) and time integration procedures. This methodology is more efficient and flexible since fewer systems of equations must be solved at each time-step. More >

  • Open Access

    ARTICLE

    A Meshless Local Petrov-Galerkin Method for Magnetic Diffusion in Non-magnetic Conductors

    J.N. Johnson1, J.M. Owen2

    CMES-Computer Modeling in Engineering & Sciences, Vol.22, No.3, pp. 165-188, 2007, DOI:10.3970/cmes.2007.022.165

    Abstract In this paper, we propose a Meshless Local Petrov-Galerkin method for studying the diffusion of a magnetic field within a non-magnetic (μ = μ0) conducting medium with non-homogeneous and anisotropic electrical resistivity. We derive a local weak form for the magnetic diffusion equation and discuss the effects of different trial/test functions and nodal spacings on its solution. We then demonstrate that the method produces convergent results for several relevant one-dimensional test problems for which solutions are known. This method has the potential to be combined with other mesh-free methods such as Smoothed Particle Hydrodynamics (SPH) to More >

  • Open Access

    ARTICLE

    Slow Viscous Migration of a Conducting Solid Particle under the Action of Uniform Ambient Electric and Magnetic Fields

    A. Sellier1

    CMES-Computer Modeling in Engineering & Sciences, Vol.21, No.2, pp. 105-132, 2007, DOI:10.3970/cmes.2007.021.105

    Abstract We examine the low-Reynolds-number migration of a conducting and arbitrarily-shaped solid particle freely immersed in a metal liquid of different conductivity when subject to uniform ambient electric and magnetic fields. The boundary formulation established elsewhere for an insulating particle is extended and the incurred particle's rigid-body motion is then obtained by determinating a very few surface quantities on the particle's surface. The behavior of either oblate or prolate conducting spheroids is analytically investigated and the poposed procedure for the challenging case of other non-trivial geometries is implemented and benchmarked against those solutions. The numerical implementation More >

  • Open Access

    ARTICLE

    Numerical Study of Liquid Metal Flow in a Rectangular Duct under the Influence of a Heterogeneous Magnetic Field

    Evgeny V. Votyakov1, Egbert A. Zienicke1

    FDMP-Fluid Dynamics & Materials Processing, Vol.3, No.2, pp. 97-114, 2007, DOI:10.3970/fdmp.2007.003.097

    Abstract We simulated numerically the laminar flow in the geometry and the magnetic field of the experimental channel used in [Andreev, Kolesnikov, and Thess (2006)]. This provides detailed information about the electric potential distribution for the laminar regime (numerical simulation) and in the turbulent regime as well (experiment). As follows from comparison of simulated and experimental results, the flow under the magnet is determined by the interaction parameter N = Ha2 / Re representing the ratio between magnetic force, determined by the Hartmann number Ha, and inertial force, determined by the Reynolds number Re. We compared two variants: (i)(Re,N)=(2000,18.6)… More >

  • Open Access

    The Effect of Rotating Magnetic Fields on the Growth of SiGe Using the Traveling Solvent Method

    T. J. Jaber1, M. Z. Saghir1

    FDMP-Fluid Dynamics & Materials Processing, Vol.2, No.3, pp. 175-190, 2006, DOI:10.3970/fdmp.2006.002.175

    Abstract The study deals with three-dimensional numerical simulations of fluid flow and heat transfer under the effect of a rotating magnetic field (RMF) during the growth of Ge0.98Si0.02 by the traveling solvent method (TSM). By using a RMF, an attempt is made to suppress buoyancy convection in the Ge0.98Si0.02 solution zone in order to get high quality and homogeneity with a flat growth interface. The full steady-state Navier-Stokes equations, as well as the energy, mass transport and continuity equations, are solved numerically using the finite element method. Different magnetic field intensities (B=2, 4, 10, 15 and 22 More >

  • Open Access

    ARTICLE

    Elevated Levels of Stress Proteins (Hsp32 and Hsp70i) in H9c2 Cells Exposed to 60Hz, 120µT Magnetic Field

    M. V. Kurian1, J. M. Mullins1, L. R. Hamilton1, P. M. Mehl2, J. K. Keevan2

    Molecular & Cellular Biomechanics, Vol.3, No.4, pp. 217-218, 2006, DOI:10.32604/mcb.2006.003.217

    Abstract This article has no abstract. More >

Displaying 91-100 on page 10 of 106. Per Page