Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    ARTICLE

    Experimental Study on the Bubble Dynamics of Magnetized Water Boiling

    Yang Cao1,*, Jianshu Liu2, Xuhui Meng1

    Frontiers in Heat and Mass Transfer, Vol.22, No.2, pp. 675-685, 2024, DOI:10.32604/fhmt.2024.051208

    Abstract Boiling heat transfer, as an efficient heat transfer approach, that can absorb a large amount of latent heat during the vaporization, is especially suitable for heat transfer occasions with high heat flux demands. Experimental studies show that the surface tension coefficient of pure water can be reduced sharply (up to 25%) when it is magnetized by a magnetic field applied externally. In this paper, magnetized water (MW) was used as the work fluid to conduct boiling heat transfer experiments, to explore the influence of magnetization on the boiling characteristics of pure water. The electromagnetic device was used to magnetize water,… More >

  • Open Access

    ARTICLE

    Types of Irrigation Water and Soil Amendment Affect the Growth and Flowering of Petunia x alkinsiana ‘Bravo Pinc’

    Abdullah M. Algahtani1, Fahed A. Al-Mana1, Khalid M. Elhindi1,2,*

    Phyton-International Journal of Experimental Botany, Vol.92, No.2, pp. 487-499, 2023, DOI:10.32604/phyton.2022.022850

    Abstract Water insufficiency is the hampering feature of crop sustainability, especially in arid and semi-arid regions. So, the effectual usage of all water resources especially underground brackish water represents the core priority in Saudi Arabia. The present study aimed to recognize the influence of different types of water irrigation (tap water as a control, salinized well water, and magnetized salinized well water) with or without soil amendments (soil without any amendment as a control, peat-moss, ferrous sulfate, and peat-moss plus ferrous sulfate) on petunia plant growth and flowering as well as ion content. Irrigating Petunia plants with saline well water adversely… More >

  • Open Access

    ARTICLE

    A Consistent Computation of Magnetization Reversal under a Circularly Polarized Field and an Anisotropy Field

    Chein-Shan Liu1

    CMC-Computers, Materials & Continua, Vol.6, No.2, pp. 117-128, 2007, DOI:10.3970/cmc.2007.006.117

    Abstract In this paper the Landau-Lifshitz equation is subjected to a circularly polarized field in the plane, as well as both a dc field and an anisotropy field along the vertical easy axis perpendicular to the plane. The representation of Landau-Lifshitz equation in the Minkowski space is a Lie-type system. By performing a computation through the Lie-group solvers we can develop a consistent numerical method, which satisfies the consistency condition exactly, and thus can retain the invariant behavior. Then, we use the consistent numerical method to investigate the magnetization reversal, whose switching criterion is displayed through the minimum curve of the… More >

  • Open Access

    ARTICLE

    The Computation of Modified Landau-Lifshitz Equation under an AC Field

    Chein-Shan Liu1,2

    CMC-Computers, Materials & Continua, Vol.5, No.2, pp. 151-160, 2007, DOI:10.3970/cmc.2007.005.151

    Abstract An accurate magnetization requires that both the reversible and irreversible components be modeled. The classical Landau-Lifshitz model deals with only the irreversible component of magnetization. We first subject the Landau-Lifshitz equation to an AC external field by performing a computation through the closed-form solution and the resulting hysteresis loop is displayed to show its deficiency. Then we modify the Landau-Lifshitz model into a new one by including a reversible part and an irreversible part accompanying with the switching criteria between these two states. With the new solutions we display the influence of parameters on the hysteresis loops of magnetic materials… More >

  • Open Access

    ARTICLE

    Numerical Simulation on the Shielding Efficiency of Magnetic Shielding Enclosures in the ITER Applications

    Yong Kou1, Ke Jin1, Xiaojing Zheng1,2

    CMC-Computers, Materials & Continua, Vol.22, No.2, pp. 129-146, 2011, DOI:10.3970/cmc.2011.022.129

    Abstract Magnetic shielding needs to be employed to ensure proper operation of some electronic equipment which are sensitive to external magnetic interference, such as cryogenic valves located inside the ITER feeder cubicles. This paper is concerned with the shielding efficiency of the magnetic shielding enclosures. A 3-D theoretical model for Fe-Ni alloy magnetic shielding enclosures based on finite element method (FEM) is obtained with the nonlinear law of magnetization. The influence of shielding materials, enclosure configurations, single or multi- layer designs, and apertures on the shielding efficiency is investigated. It is shown that the proposed model can predict the shielding efficiency… More >

Displaying 1-10 on page 1 of 5. Per Page