Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access


    Key Transport Mechanisms in Supercritical CO2 Based Pilot Micromodels Subjected to Bottom Heat and Mass Diffusion

    Karim Ragui1, Mengshuai Chen1,2, Lin Chen1,2,3,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.3, pp. 1-2, 2023, DOI:10.32604/icces.2023.010378

    Abstract The ambiguous dynamics associated with heat and mass transfer of invading carbon dioxide in sub-critical and supercritical states, as well as the response of pore-scale resident fluids, play a key role in understanding CO2 capture and storage (CCUS) and the corresponding phase equilibrium mechanisms. To this end, this paper reveals the transport mechanisms of invading supercritical carbon dioxide (sCO2) in polluted micromodels using a variant of Lattice-Boltzmann Color Fluid model and descriptive experimental data. The breakthrough time is evaluated by characterizing the displacement velocity, the capillary to pressuredifference ratio, and the transient heat and mass diffusion at a series of… More >

  • Open Access



    J. K. Singha,*, N. Joshia , S. G. Beguma, C. T. Srinivasab

    Frontiers in Heat and Mass Transfer, Vol.7, pp. 1-12, 2016, DOI:10.5098/hmt.7.24

    Abstract In the present analytical study, we have considered unsteady hydromagnetic heat and mass transfer natural convection flow of an electrically conducting, heat absorbing and chemically reacting fluid past an exponentially accelerated vertical plate in a uniform porous medium taking Hall current and rotation into account. The species concentration near the plate is considered to be varies linearly with time. Two particular cases for plate temperature are considered i.e. (i) plate temperature is uniform and (ii) plate temperature varies linearly with time and after some time it is maintained at uniform temperature. The coupled partial differential equations governing the fluid flow… More >

  • Open Access


    Fusion of Internal Similarity to Improve the Accuracy of Recommendation Algorithm

    Zejun Yang1, Denghui Xia1, Jin Liu1, Chao Zheng2, Yanzhen Qu1,3,4, Yadang Chen1, Chengjun Zhang1,2,3,*

    Journal on Internet of Things, Vol.3, No.2, pp. 65-76, 2021, DOI:10.32604/jiot.2021.015401

    Abstract Collaborative filtering algorithms (CF) and mass diffusion (MD) algorithms have been successfully applied to recommender systems for years and can solve the problem of information overload. However, both algorithms suffer from data sparsity, and both tend to recommend popular products, which have poor diversity and are not suitable for real life. In this paper, we propose a user internal similarity-based recommendation algorithm (UISRC). UISRC first calculates the item-item similarity matrix and calculates the average similarity between items purchased by each user as the user’s internal similarity. The internal similarity of users is combined to modify the recommendation score to make… More >

  • Open Access


    A Novel Service Recommendation Approach in Mashup Creation

    Yanmei Zhang1, Xiao Geng2, Shuiguang Deng3

    Intelligent Automation & Soft Computing, Vol.25, No.3, pp. 513-525, 2019, DOI:10.31209/2019.100000108

    Abstract With the development of service computing technologies, the online services are massive and disordered now. How to find appropriate services quickly and build a more powerful composed service according to user interests has been a research focus in recent years. Current service recommendation algorithms often directly follow the traditional recommendation framework of ecommerce, which cannot effectively assist users to complete dynamic online business construction. Therefore, a novel service recommendation approach named UISCS (User-Interest- initial Services-Correlation-successor Services) is proposed, which is designed for interactive scenario of service composition, and it mines the user implicit interests and the service correlations for service… More >

  • Open Access


    Homotopy Analysis of Natural Convection Flows with Effects of Thermal and Mass Diffusion

    Wei-Chung Tien1, Yue-Tzu Yang1, Cha’o-Kuang Chen1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.85, No.5, pp. 447-462, 2012, DOI:10.3970/cmes.2012.085.447

    Abstract Both buoyancy effects of thermal and mass diffusion in the natural convection flow about a vertical plate are considered in this paper. The non-linear coupled differential governing equations for velocity, temperature and concentration fields are solved by using the homotopy analysis method. Without the need of iteration, the obtained solution is in the form of an infinite power series which indicates those series have high accuracy when comparing it with other-generated by the traditional method. The impact of the Prandtl number, Schmidt number and the buoyancy parameter on the flow are widely discussed in detail. More >

Displaying 1-10 on page 1 of 5. Per Page