Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    ARTICLE

    Experimental and Peridynamic Numerical Study on the Opening Process of the Soft PSD in Pulse Solid Rocket Motors

    Wenxia Cheng1, Qinliu Cao1, Bin Yuan1, Jiale Yan2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.3, pp. 3197-3214, 2025, DOI:10.32604/cmes.2025.065041 - 30 June 2025

    Abstract As a critical component of pulse solid rocket motors (SRMs), the soft pulse separation device (PSD) is vital in enabling multi-pulse propulsion and has become a breakthrough in SRM engineering applications. To investigate the opening performance of the PSD, an axial PSD incorporating a star-shaped prefabricated defect was designed. The opening process was simulated using peridynamics, yielding the strain field distribution and the corresponding failure mode. A single-opening verification test was conducted. The simulation results showed good agreement with the experimental data, demonstrating the reliability of the peridynamic modeling approach. Furthermore, the effects of the… More >

  • Open Access

    ARTICLE

    Minimizing Buoyancy Factor of Metallic Pressure-Hull Subjected to Hydrostatic Pressure

    Mahmoud Helal1,2, Elsayed Fathallah3,4, Abdulaziz H Alghtani1, Hussein Shawki Osman5, Jong Wan Hu6,7,*, Hasan Eleashy8

    Intelligent Automation & Soft Computing, Vol.35, No.1, pp. 769-793, 2023, DOI:10.32604/iasc.2023.025618 - 06 June 2022

    Abstract To increase the payload, reduce energy consumption, improve work efficiency and therefore must accordingly reduce the total hull weight of the submersible. This paper introduces a design optimization process for the pressure-hull of submarines under uniform external hydrostatic pressure using both finite element analysis (FEA) and optimization tools. A comprehensive study about the optimum design of the pressure hull, to minimize the weight and increase the volume, to reach minimum buoyancy factor and maximum operating depth minimizing the buoyancy factor (B.F) is taken as an objective function with constraints of plate and frame yielding, general… More >

  • Open Access

    ARTICLE

    Simulation of Fragmentation with Material Point Method Based on Gurson Model and Random Failure

    Pengfei Yang1, Yan Liu1, Xiong Zhang1,2, Xu Zhou3, Yuli Zhao3

    CMES-Computer Modeling in Engineering & Sciences, Vol.85, No.3, pp. 207-238, 2012, DOI:10.3970/cmes.2012.085.207

    Abstract The material point method is extended to the simulations of fragmentation driven by detonation. A crack modeling scheme based on contact algorithm with material failure process is developed to study the dynamic crack propagation in plastic media. When considering microscopic damage of material, the plastic behavior is described by Gurson model with randomly-distributed initial void of material points. Gurson model can degenerate to J2 plastic theory while the microscopic void is ignored, in which situation the Weibull random failure scheme will be used. Meanwhile, a background-grid-based searching method is proposed to capture the statistical feature More >

  • Open Access

    ARTICLE

    Quadrilateral Finite Element with Embedded Strong Discontinuity for Failure Analysis of Solids

    J. Dujc1,3, B. Brank1,2, A. Ibrahimbegovic3

    CMES-Computer Modeling in Engineering & Sciences, Vol.69, No.3, pp. 223-260, 2010, DOI:10.3970/cmes.2010.069.223

    Abstract We present a quadrilateral finite element with discontinuous displacement fields that can be used to model material failure in 2d brittle and ductile solids. The element provides mesh-objective results. The element's kinematics can represent linear displacement jumps along the discontinuity line in both normal and tangential directions to the line. The cohesive law in the discontinuity line is based on rigid-plasticity model with softening. The material of the bulk of the element is described by hardening plasticity model. Static condensation of the jump-in-displacements kinematic parameters is made, which provides standard form of the element stiffness More >

  • Open Access

    ARTICLE

    A Coupled Thermo-Mechanical Model for Simulating the Material Failure Evolution Due to Localized Heating

    Z. Chen1,2, Y. Gan1, J.K. Chen2

    CMES-Computer Modeling in Engineering & Sciences, Vol.26, No.2, pp. 123-138, 2008, DOI:10.3970/cmes.2008.026.123

    Abstract A coupled thermo-mechanical constitutive model with decohesion is proposed to simulate the material failure evolution due to localized heating. A discontinuous bifurcation analysis is performed based on a thermoviscoplasticity relation to identify the transition from continuous to discontinuous failure modes as well as the orientation of the discontinuous failure. The thermo-mechanical model is then implemented within the framework of the Material Point Method (MPM) so that the different gradient and divergence operators in the governing differential equations could be discretized in a single computational domain and that continuous remeshing is not required with the evolution More >

Displaying 1-10 on page 1 of 5. Per Page