Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (26)
  • Open Access

    ARTICLE

    Energy Optimization in Multi-UAV-Assisted Edge Data Collection System

    Bin Xu1,2,3, Lu Zhang1, Zipeng Xu1, Yichuan Liu1, Jinming Chai1, Sichong Qin4, Yanfei Sun1,*

    CMC-Computers, Materials & Continua, Vol.69, No.2, pp. 1671-1686, 2021, DOI:10.32604/cmc.2021.018395

    Abstract In the IoT (Internet of Things) system, the introduction of UAV (Unmanned Aerial Vehicle) as a new data collection platform can solve the problem that IoT devices are unable to transmit data over long distances due to the limitation of their battery energy. However, the unreasonable distribution of UAVs will still lead to the problem of the high total energy consumption of the system. In this work, to deal with the problem, a deployment model of a mobile edge computing (MEC) system based on multi-UAV is proposed. The goal of the model is to minimize the energy consumption of the… More >

  • Open Access

    ARTICLE

    Intelligent Real-Time IoT Traffic Steering in 5G Edge Networks

    Sa Math1, Prohim Tam1, Seokhoon Kim2,*

    CMC-Computers, Materials & Continua, Vol.67, No.3, pp. 3433-3450, 2021, DOI:10.32604/cmc.2021.015490

    Abstract In the Next Generation Radio Networks (NGRN), there will be extreme massive connectivity with the Heterogeneous Internet of Things (HetIoT) devices. The millimeter-Wave (mmWave) communications will become a potential core technology to increase the capacity of Radio Networks (RN) and enable Multiple-Input and Multiple-Output (MIMO) of Radio Remote Head (RRH) technology. However, the challenging key issues in unfair radio resource handling remain unsolved when massive requests are occurring concurrently. The imbalance of resource utilization is one of the main issues occurs when there is overloaded connectivity to the closest RRH receiving exceeding requests. To handle this issue effectively, Machine Learning… More >

  • Open Access

    ARTICLE

    A Comprehensive Utility Function for Resource Allocation in Mobile Edge Computing

    Zaiwar Ali1, Sadia Khaf2, Ziaul Haq Abbas2, Ghulam Abbas3, Lei Jiao4, Amna Irshad2, Kyung Sup Kwak5, Muhammad Bilal6,*

    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1461-1477, 2021, DOI:10.32604/cmc.2020.013743

    Abstract In mobile edge computing (MEC), one of the important challenges is how much resources of which mobile edge server (MES) should be allocated to which user equipment (UE). The existing resource allocation schemes only consider CPU as the requested resource and assume utility for MESs as either a random variable or dependent on the requested CPU only. This paper presents a novel comprehensive utility function for resource allocation in MEC. The utility function considers the heterogeneous nature of applications that a UE offloads to MES. The proposed utility function considers all important parameters, including CPU, RAM, hard disk space, required… More >

  • Open Access

    ARTICLE

    Workload Allocation Based on User Mobility in Mobile Edge Computing

    Tengfei Yang1,2, Xiaojun Shi3, Yangyang Li1,*, Binbin Huang4, Haiyong Xie1,5, Yanting Shen4

    Journal on Big Data, Vol.2, No.3, pp. 105-115, 2020, DOI:10.32604/jbd.2020.010958

    Abstract Mobile Edge Computing (MEC) has become the most possible network architecture to realize the vision of interconnection of all things. By offloading compute-intensive or latency-sensitive applications to nearby small cell base stations (sBSs), the execution latency and device power consumption can be reduced on resource-constrained mobile devices. However, computation delay of Mobile Edge Network (MEN) tasks are neglected while the unloading decision-making is studied in depth. In this paper, we propose a workload allocation scheme which combines the task allocation optimization of mobile edge network with the actual user behavior activities to predict the task allocation of single user. We… More >

  • Open Access

    ARTICLE

    User Profile System Based on Sentiment Analysis for Mobile Edge Computing

    Sang-Min Park1, Young-Gab Kim2, *

    CMC-Computers, Materials & Continua, Vol.62, No.2, pp. 569-590, 2020, DOI:10.32604/cmc.2020.08666

    Abstract Emotions of users do not converge in a single application but are scattered across diverse applications. Mobile devices are the closest media for handling user data and these devices have the advantage of integrating private user information and emotions spread over different applications. In this paper, we first analyze user profile on a mobile device by describing the problem of the user sentiment profile system in terms of data granularity, media diversity, and server-side solution. Fine-grained data requires additional data and structural analysis in mobile devices. Media diversity requires standard parameters to integrate user data from various applications. A server-side… More >

  • Open Access

    ARTICLE

    Deep Q-Learning Based Computation Offloading Strategy for Mobile Edge Computing

    Yifei Wei1,*, Zhaoying Wang1, Da Guo1, F. Richard Yu2

    CMC-Computers, Materials & Continua, Vol.59, No.1, pp. 89-104, 2019, DOI:10.32604/cmc.2019.04836

    Abstract To reduce the transmission latency and mitigate the backhaul burden of the centralized cloud-based network services, the mobile edge computing (MEC) has been drawing increased attention from both industry and academia recently. This paper focuses on mobile users’ computation offloading problem in wireless cellular networks with mobile edge computing for the purpose of optimizing the computation offloading decision making policy. Since wireless network states and computing requests have stochastic properties and the environment’s dynamics are unknown, we use the model-free reinforcement learning (RL) framework to formulate and tackle the computation offloading problem. Each mobile user learns through interactions with the… More >

Displaying 21-30 on page 3 of 26. Per Page