Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (12)
  • Open Access


    Geometrically-Compatible Dislocation Pattern and Modeling of Crystal Plasticity in Body-Centered Cubic (BCC) Crystal at Micron Scale

    Yuxi Xie, Shaofan Li*

    CMES-Computer Modeling in Engineering & Sciences, Vol.129, No.3, pp. 1419-1440, 2021, DOI:10.32604/cmes.2021.016756

    Abstract The microstructure of crystal defects, e.g., dislocation patterns, are not arbitrary, and it is possible that some of them may be related to the microstructure of crystals itself, i.e., the lattice structure. We call those dislocation patterns or substructures that are related to the corresponding crystal microstructure as the Geometrically Compatible Dislocation Patterns (GCDP). Based on this notion, we have developed a Multiscale Crystal Defect Dynamics (MCDD) to model crystal plasticity without or with minimum empiricism. In this work, we employ the multiscale dislocation pattern dynamics, i.e., MCDD, to simulate crystal plasticity in body-centered cubic (BCC) single More >

  • Open Access


    Multiscale simulation for long chain polymer using MD/continuum hybrid method

    Y. Senda, M. Fujio, S. Shimamura, J. Blomqvist, R. M Nieminen

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.18, No.3, pp. 93-94, 2011, DOI:10.3970/icces.2011.018.093

    Abstract Atomistic molecular dynamics simulation for"polymer melts has been performed inten-sively and revealed the dynamical behavior of atomistic"chain structure in the melt. These atomistic"calculations, however, have been limited by the massive computational costs because of macroscopic properties of long chain polymer. It would be highly de-sirable to use a multiscale approach covering atomistic and macroscopic behavior of the polymer melt. We have developed computational method coupling atomic model and continuum model [1] and applied the method to polymer melt consisted of the long chain polymers. The polymer molecule is coarse-grained into meso-scopic model by so-called spring- More >

  • Open Access


    Multiscale simulation of crack propagation using variable-node finite elements

    Dongwoo Sohn1, Jae Hyuk Lim2, Young-Sam Cho3, Seyoung Im1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.10, No.2, pp. 53-54, 2009, DOI:10.3970/icces.2009.010.053

    Abstract A novel multiscale finite element (FE) scheme is proposed for a simulation of crack propagation in the heterogeneous media including randomly distributed microstructures, such as voids, rigid fibers. A fine scale mesh is employed to capture the singularity of the crack tip and the effect of microstructures at the vicinity of crack tip. On the other hand, a region far from the crack tip is composed of coarse scale mesh, wherein the effect of the microstructures is averaged through the homogenization theory. An interface between the fine scale mesh and the coarse scale mesh is More >

  • Open Access


    A Tangent Stiffness MLPG Method for Atom/Continuum Multiscale Simulation

    Shengping Shen1, S. N. Atluri1

    CMES-Computer Modeling in Engineering & Sciences, Vol.7, No.1, pp. 49-68, 2005, DOI:10.3970/cmes.2005.007.049

    Abstract The main objective of this paper is to develop a multiscale method for the static analysis of a nano-system, based on a combination of molecular mechanics and MLPG methods. The tangent-stiffness formulations are given for this multiscale method, as well as a pure molecular mechanics method. This method is also shown to naturally link the continuum local balance equation with molecular mechanics, directly, based on the stress or force. Numerical results show that this multiscale method quite accurate. The tangent-stiffness MLPG method is very effective and stable in multiscale simulations. This multiscale method dramatically reduces More >

  • Open Access


    Multiscale Simulation Based on The Meshless Local Petrov-Galerkin (MLPG) Method

    gping Shen1, S. N. Atluri1

    CMES-Computer Modeling in Engineering & Sciences, Vol.5, No.3, pp. 235-256, 2004, DOI:10.3970/cmes.2004.005.235

    Abstract A multiscale simulation technique based on the MLPG methods, and finite deformation mechanics, is developed, implemented, and tested. Several alternate time-dependent interfacial conditions, between the atomistic and continuum regions, are systematically studied, for the seamless multiscale simulation, by decomposing the displacement of atoms in the equivalent-continuum region into long and short wave-length components. All of these methods for enforcing the interface conditions can ensure the passage of information accurately between the atomistic and continuum regions, while they lead to different performances at short wavelengths. The presently proposed Solution Method 2 reduces the phonon reflections at More >

  • Open Access


    A Multiscale Method Based on the Fibre Configuration Field, IRBF and DAVSS for the Simulation of Fibre Suspension Flows

    H.Q. Nguyen1, C.-D. Tran1, T. Tran-Cong1

    CMES-Computer Modeling in Engineering & Sciences, Vol.109-110, No.4, pp. 361-403, 2015, DOI:10.3970/cmes.2015.109.361

    Abstract In this paper, an Integrated Radial Basis Function (IRBF)-based multiscale method is used to simulate the rheological properties of dilute fibre suspensions. For the approach, a fusion of the IRBF computation scheme, the Discrete Adaptive Viscoelastic Stress Splitting (DAVSS) technique and the Fibre Configuration Field has been developed to investigate the evolution of the flow and the fibre configurations through two separate computational processes. Indeed, the flow conservation equations, which are expressed in vorticity-stream function formulation, are solved using IRBF-based numerical schemes while the evolution of fibre configuration fields governed by the Jeffery’s equation is… More >

  • Open Access


    Multiscale Simulation of Nanoindentation Using the Generalized Interpolation Material Point (GIMP) Method, Dislocation Dynamics (DD) and Molecular Dynamics (MD)

    Jin Ma, Yang Liu, Hongbing Lu, Ranga Komanduri1

    CMES-Computer Modeling in Engineering & Sciences, Vol.16, No.1, pp. 41-56, 2006, DOI:10.3970/cmes.2006.016.041

    Abstract A multiscale simulation technique coupling three scales, namely, the molecular dynamics (MD) at the atomistic scale, the discrete dislocations at the meso scale and the generalized interpolation material point (GIMP) method at the continuum scale is presented. Discrete dislocations are first coupled with GIMP using the principle of superposition (van der Giessen and Needleman (1995)). A detection band seeded in the MD region is used to pass the dislocations to and from the MD simulations (Shilkrot, Miller and Curtin (2004)). A common domain decomposition scheme for each of the three scales was implemented for parallel More >

  • Open Access


    Multiscale Simulation Using Generalized Interpolation Material Point (GIMP) Method and Molecular Dynamics (MD)1

    J. Ma2, H. Lu2, B. Wang2, R. Hornung3, A. Wissink3, R. Komanduri2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.14, No.2, pp. 101-118, 2006, DOI:10.3970/cmes.2006.014.101

    Abstract A new method for multiscale simulation bridging two scales, namely, the continuum scale using the generalized interpolation material point (GIMP) method and the atomistic scale using the molecular dynamics (MD), is presented and verified in 2D. The atomistic strain from the molecular dynamics simulation is determined through interpolation of the displacement field into an Eulerian background grid using the same generalized interpolation functions as that in the GIMP method. The atomistic strain is consistent with that determined from the virial theorem for interior points but provides more accurate values at the boundary of the MD… More >

  • Open Access


    Application of An Atomistic Field Theory to Nano/Micro Materials Modeling and Simulation

    Xiaowei Zeng1

    CMES-Computer Modeling in Engineering & Sciences, Vol.74, No.3&4, pp. 183-202, 2011, DOI:10.3970/cmes.2011.074.183

    Abstract This paper presents an atomistic field theory and its application in modeling and simulation of nano/micro materials. Atomistic formulation and finite element implementation of the atomistic field theory is briefly introduced. Numerical simulations based on the field theory are performed to investigate the material behaviors of bcc iron at coarse-grained scale and we have obtained the mechanical strength and elastic modulus, which are in good agreement with results by first principles calculations. Also the nanoscale deformation and failure mechanism are revealed in bcc iron nanorods under simple tension. It is interesting to observe that under More >

  • Open Access


    Coupled Atomistic/Continuum Simulation based on Extended Space-Time Finite Element Method

    Shardool U. Chirputkar1, Dong Qian2

    CMES-Computer Modeling in Engineering & Sciences, Vol.24, No.2&3, pp. 185-202, 2008, DOI:10.3970/cmes.2008.024.185

    Abstract A multiscale method based on the extended space-time finite element method is developed for the coupled atomistic/continuum simulation of nanoscale material systems. Existing single scale approach such as the finite element method has limited capability of representing the fine scale physics in both the spatial and temporal domains. This is a major disadvantage for directly incorporating FEM in coupled atomistic/continuum simulations as it results in errors such as spurious wave reflections at the atomistic/continuum interface. While numerous efforts have been devoted to eliminating the interfacial mismatch effects, less attention has been paid to developing fine More >

Displaying 1-10 on page 1 of 12. Per Page