Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access


    Solving Fractional Differential Equations via Fixed Points of Chatterjea Maps

    Nawab Hussain1,*, Saud M. Alsulami1, Hind Alamri1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.3, pp. 2617-2648, 2023, DOI:10.32604/cmes.2023.023143

    Abstract In this paper, we present the existence and uniqueness of fixed points and common fixed points for Reich and Chatterjea pairs of self-maps in complete metric spaces. Furthermore, we study fixed point theorems for Reich and Chatterjea nonexpansive mappings in a Banach space using the Krasnoselskii-Ishikawa iteration method associated with and consider some applications of our results to prove the existence of solutions for nonlinear integral and nonlinear fractional differential equations. We also establish certain interesting examples to illustrate the usability of our results. More >

  • Open Access


    A Wavelet Numerical Method for Solving Nonlinear Fractional Vibration, Diffusion and Wave Equations

    Zhou YH1,2, Wang XM2, Wang JZ1,2 , Liu XJ2

    CMES-Computer Modeling in Engineering & Sciences, Vol.77, No.2, pp. 137-160, 2011, DOI:10.3970/cmes.2011.077.137

    Abstract In this paper, we present an efficient wavelet-based algorithm for solving a class of fractional vibration, diffusion and wave equations with strong nonlinearities. For this purpose, we first suggest a wavelet approximation for a function defined on a bounded interval, in which expansion coefficients are just the function samplings at each nodal point. As the fractional differential equations containing strong nonlinear terms and singular integral kernels, we then use Laplace transform to convert them into the second type Voltera integral equations with non-singular kernels. Certain property of the integral kernel and the ability of explicit More >

Displaying 1-10 on page 1 of 2. Per Page