Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Unknown DDoS Attack Detection with Sliced Iterative Normalizing Flows Technique

    Chin-Shiuh Shieh1, Thanh-Lam Nguyen1, Thanh-Tuan Nguyen2,*, Mong-Fong Horng1,*

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 4881-4912, 2025, DOI:10.32604/cmc.2025.061001 - 06 March 2025

    Abstract DDoS attacks represent one of the most pervasive and evolving threats in cybersecurity, capable of crippling critical infrastructures and disrupting services globally. As networks continue to expand and threats become more sophisticated, there is an urgent need for Intrusion Detection Systems (IDS) capable of handling these challenges effectively. Traditional IDS models frequently have difficulties in detecting new or changing attack patterns since they heavily depend on existing characteristics. This paper presents a novel approach for detecting unknown Distributed Denial of Service (DDoS) attacks by integrating Sliced Iterative Normalizing Flows (SINF) into IDS. SINF utilizes the… More >

  • Open Access

    ARTICLE

    A Normalizing Flow-Based Bidirectional Mapping Residual Network for Unsupervised Defect Detection

    Lanyao Zhang1, Shichao Kan2, Yigang Cen3, Xiaoling Chen1, Linna Zhang1,*, Yansen Huang4,5

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 1631-1648, 2024, DOI:10.32604/cmc.2024.046924 - 27 February 2024

    Abstract Unsupervised methods based on density representation have shown their abilities in anomaly detection, but detection performance still needs to be improved. Specifically, approaches using normalizing flows can accurately evaluate sample distributions, mapping normal features to the normal distribution and anomalous features outside it. Consequently, this paper proposes a Normalizing Flow-based Bidirectional Mapping Residual Network (NF-BMR). It utilizes pre-trained Convolutional Neural Networks (CNN) and normalizing flows to construct discriminative source and target domain feature spaces. Additionally, to better learn feature information in both domain spaces, we propose the Bidirectional Mapping Residual Network (BMR), which maps sample… More > Graphic Abstract

    A Normalizing Flow-Based Bidirectional Mapping Residual Network for Unsupervised Defect Detection

Displaying 1-10 on page 1 of 2. Per Page