Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access


    Field Observation and Numerical Simulation of Extreme Met-Ocean Conditions: A Case Study of Typhoon Events in South China Sea

    Chen Gu1,*, Caiyu Wang1, Mengjiao Du2, Kan Yi2, Bihong Zhu1, Hao Wang2, Shu Dai1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.3, pp. 1-1, 2023, DOI:10.32604/icces.2023.09776

    Abstract Site measurement is essential to the meteorological and oceanographic parameters of offshore wind farms. A floating lidar measurement buoy was deployed at a Qingzhou VI wind farm where is 45-80 km away from Guangdong coast. The field observation including wind and wave data start from March, 2021.The lidar wind data is compared and calibrated with the fixed wind tower data for three months, the accuracy meets the standard of stadge3 carbon trust. In this study, all these data are used to recalibrate for the met-ocean model to relies extreme conditions, such as Typhoon Kompasu(2118) and More >

  • Open Access


    Research on Reactive Power Optimization of Offshore Wind Farms Based on Improved Particle Swarm Optimization

    Zhonghao Qian1, Hanyi Ma1, Jun Rao2, Jun Hu1, Lichengzi Yu2,*, Caoyi Feng1, Yunxu Qiu1, Kemo Ding1

    Energy Engineering, Vol.120, No.9, pp. 2013-2027, 2023, DOI:10.32604/ee.2023.028859

    Abstract The lack of reactive power in offshore wind farms will affect the voltage stability and power transmission quality of wind farms. To improve the voltage stability and reactive power economy of wind farms, the improved particle swarm optimization is used to optimize the reactive power planning in wind farms. First, the power flow of offshore wind farms is modeled, analyzed and calculated. To improve the global search ability and local optimization ability of particle swarm optimization, the improved particle swarm optimization adopts the adaptive inertia weight and asynchronous learning factor. Taking the minimum active power… More >

  • Open Access


    Research on Asymmetric Fault Location of Wind Farm Collection System Based on Compressed Sensing

    Huanan Yu1, Gang Han1,*, Hansong Luo2, He Wang1

    Energy Engineering, Vol.120, No.9, pp. 2029-2057, 2023, DOI:10.32604/ee.2023.028365

    Abstract Aiming at the problem that most of the cables in the power collection system of offshore wind farms are buried deep in the seabed, which makes it difficult to detect faults, this paper proposes a two-step fault location method based on compressed sensing and ranging equation. The first step is to determine the fault zone through compressed sensing, and improve the data measurement, dictionary design and algorithm reconstruction: Firstly, the phase-locked loop trigonometric function method is used to suppress the spike phenomenon when extracting the fault voltage, so that the extracted voltage value will not… More >

  • Open Access


    Review on Research about Wake Effects of Offshore Wind Turbines

    Yehong Dong1,2, Guangyin Tang3, Yan Jia4, Zekun Wang4,5, Xiaomin Rong5, Chang Cai5, Qingan Li5, Yingjian Yang4,5,*

    Energy Engineering, Vol.119, No.4, pp. 1341-1360, 2022, DOI:10.32604/ee.2022.019150

    Abstract In recent years, the construction of offshore wind farms is developing rapidly. As the wake effect of the upstream wind turbines seriously affect the performance of the downstream wind turbines, the wake effect of offshore wind turbines has become one of the research hotspots. First, this article reviews the research methods of wake effects, including CFD numerical simulation method, wind turbine wake model based on roughness and engineering wake models. However, there is no general model that can be used directly. Then it puts forward some factors that affect the wake of offshore wind turbines.… More > Graphic Abstract

    Review on Research about Wake Effects of Offshore Wind Turbines

Displaying 1-10 on page 1 of 4. Per Page