Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,574)
  • Open Access


    A Multiscale Reliability-Based Design Optimization Method for Carbon-Fiber-Reinforced Composite Drive Shafts

    Huile Zhang1,2,*, Shikang Li2, Yurui Wu3, Pengpeng Zhi1, Wei Wang1,4, Zhonglai Wang1,4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1975-1996, 2024, DOI:10.32604/cmes.2024.050185

    Abstract Carbon fiber composites, characterized by their high specific strength and low weight, are becoming increasingly crucial in automotive lightweighting. However, current research primarily emphasizes layer count and orientation, often neglecting the potential of microstructural design, constraints in the layup process, and performance reliability. This study, therefore, introduces a multiscale reliability-based design optimization method for carbon fiber-reinforced plastic (CFRP) drive shafts. Initially, parametric modeling of the microscale cell was performed, and its elastic performance parameters were predicted using two homogenization methods, examining the impact of fluctuations in microscale cell parameters on composite material performance. A finite element model of the CFRP… More >

  • Open Access


    Energy-Saving Distributed Flexible Job Shop Scheduling Optimization with Dual Resource Constraints Based on Integrated Q-Learning Multi-Objective Grey Wolf Optimizer

    Hongliang Zhang1,2, Yi Chen1, Yuteng Zhang1, Gongjie Xu3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1459-1483, 2024, DOI:10.32604/cmes.2024.049756

    Abstract The distributed flexible job shop scheduling problem (DFJSP) has attracted great attention with the growth of the global manufacturing industry. General DFJSP research only considers machine constraints and ignores worker constraints. As one critical factor of production, effective utilization of worker resources can increase productivity. Meanwhile, energy consumption is a growing concern due to the increasingly serious environmental issues. Therefore, the distributed flexible job shop scheduling problem with dual resource constraints (DFJSP-DRC) for minimizing makespan and total energy consumption is studied in this paper. To solve the problem, we present a multi-objective mathematical model for DFJSP-DRC and propose a Q-learning-based… More >

  • Open Access


    Topology Optimization of Two Fluid Heat Transfer Problems for Heat Exchanger Design

    Kun Yan1, Yunyu Wang2, Jun Yan3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1949-1974, 2024, DOI:10.32604/cmes.2024.048877

    Abstract Topology optimization of thermal-fluid coupling problems has received widespread attention. This article proposes a novel topology optimization method for laminar two-fluid heat exchanger design. The proposed method utilizes an artificial density field to create two permeability interpolation functions that exhibit opposing trends, ensuring separation between the two fluid domains. Additionally, a Gaussian function is employed to construct an interpolation function for the thermal conductivity coefficient. Furthermore, a computational program has been developed on the OpenFOAM platform for the topology optimization of two-fluid heat exchangers. This program leverages parallel computing, significantly reducing the time required for the topology optimization process. To… More >

  • Open Access


    Enhancing Renewable Energy Integration: A Gaussian-Bare-Bones Levy Cheetah Optimization Approach to Optimal Power Flow in Electrical Networks

    Ali S. Alghamdi1,*, Mohamed A. Zohdy2, Saad Aldoihi3,4

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1339-1370, 2024, DOI:10.32604/cmes.2024.048839

    Abstract In the contemporary era, the global expansion of electrical grids is propelled by various renewable energy sources (RESs). Efficient integration of stochastic RESs and optimal power flow (OPF) management are critical for network optimization. This study introduces an innovative solution, the Gaussian Bare-Bones Levy Cheetah Optimizer (GBBLCO), addressing OPF challenges in power generation systems with stochastic RESs. The primary objective is to minimize the total operating costs of RESs, considering four functions: overall operating costs, voltage deviation management, emissions reduction, voltage stability index (VSI) and power loss mitigation. Additionally, a carbon tax is included in the objective function to reduce… More >

  • Open Access


    A Distributionally Robust Optimization Scheduling Model for Regional Integrated Energy Systems Considering Hot Dry Rock Co-Generation

    Hao Qi1, Mohamed Sharaf2, Andres Annuk3, Adrian Ilinca4, Mohamed A. Mohamed5,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1387-1404, 2024, DOI:10.32604/cmes.2024.048672

    Abstract Hot dry rock (HDR) is rich in reserve, widely distributed, green, low-carbon, and has broad development potential and prospects. In this paper, a distributionally robust optimization (DRO) scheduling model for a regionally integrated energy system (RIES) considering HDR co-generation is proposed. First, the HDR-enhanced geothermal system (HDR-EGS) is introduced into the RIES. HDR-EGS realizes the thermoelectric decoupling of combined heat and power (CHP) through coordinated operation with the regional power grid and the regional heat grid, which enhances the system wind power (WP) feed-in space. Secondly, peak-hour loads are shifted using price demand response guidance in the context of time-of-day… More >

  • Open Access


    Intelligent Fractional-Order Controller for SMES Systems in Renewable Energy-Based Microgrid

    Aadel M. Alatwi1,2, Abualkasim Bakeer3, Sherif A. Zaid1,*, Ibrahem E. Atawi1, Hani Albalawi1,4, Ahmed M. Kassem5

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1807-1830, 2024, DOI:10.32604/cmes.2024.048521

    Abstract An autonomous microgrid that runs on renewable energy sources is presented in this article. It has a superconducting magnetic energy storage (SMES) device, wind energy-producing devices, and an energy storage battery. However, because such microgrids are nonlinear and the energy they create varies with time, controlling and managing the energy inside them is a difficult issue. Fractional-order proportional integral (FOPI) controller is recommended for the current research to enhance a standalone microgrid’s energy management and performance. The suggested dedicated control for the SMES comprises two loops: the outer loop, which uses the FOPI to regulate the DC-link voltage, and the… More >

  • Open Access


    Advanced Machine Learning Methods for Prediction of Blast-Induced Flyrock Using Hybrid SVR Methods

    Ji Zhou1,2, Yijun Lu3, Qiong Tian1,2, Haichuan Liu3, Mahdi Hasanipanah4,5,*, Jiandong Huang3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1595-1617, 2024, DOI:10.32604/cmes.2024.048398

    Abstract Blasting in surface mines aims to fragment rock masses to a proper size. However, flyrock is an undesirable effect of blasting that can result in human injuries. In this study, support vector regression (SVR) is combined with four algorithms: gravitational search algorithm (GSA), biogeography-based optimization (BBO), ant colony optimization (ACO), and whale optimization algorithm (WOA) for predicting flyrock in two surface mines in Iran. Additionally, three other methods, including artificial neural network (ANN), kernel extreme learning machine (KELM), and general regression neural network (GRNN), are employed, and their performances are compared to those of four hybrid SVR models. After modeling,… More >

  • Open Access


    Multi-Material Topology Optimization of 2D Structures Using Convolutional Neural Networks

    Jiaxiang Luo1,2, Weien Zhou2,3, Bingxiao Du1,*, Daokui Li1, Wen Yao2,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1919-1947, 2024, DOI:10.32604/cmes.2024.048118

    Abstract In recent years, there has been significant research on the application of deep learning (DL) in topology optimization (TO) to accelerate structural design. However, these methods have primarily focused on solving binary TO problems, and effective solutions for multi-material topology optimization (MMTO) which requires a lot of computing resources are still lacking. Therefore, this paper proposes the framework of multiphase topology optimization using deep learning to accelerate MMTO design. The framework employs convolutional neural network (CNN) to construct a surrogate model for solving MMTO, and the obtained surrogate model can rapidly generate multi-material structure topologies in negligible time without any… More >

  • Open Access


    Multi-Strategy Assisted Multi-Objective Whale Optimization Algorithm for Feature Selection

    Deng Yang1, Chong Zhou1,*, Xuemeng Wei2, Zhikun Chen3, Zheng Zhang4

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1563-1593, 2024, DOI:10.32604/cmes.2024.048049

    Abstract In classification problems, datasets often contain a large amount of features, but not all of them are relevant for accurate classification. In fact, irrelevant features may even hinder classification accuracy. Feature selection aims to alleviate this issue by minimizing the number of features in the subset while simultaneously minimizing the classification error rate. Single-objective optimization approaches employ an evaluation function designed as an aggregate function with a parameter, but the results obtained depend on the value of the parameter. To eliminate this parameter’s influence, the problem can be reformulated as a multi-objective optimization problem. The Whale Optimization Algorithm (WOA) is… More >

  • Open Access


    Path-Based Clustering Algorithm with High Scalability Using the Combined Behavior of Evolutionary Algorithms

    Leila Safari-Monjeghtapeh1, Mansour Esmaeilpour2,*

    Computer Systems Science and Engineering, Vol.48, No.3, pp. 705-721, 2024, DOI:10.32604/csse.2024.044892

    Abstract Path-based clustering algorithms typically generate clusters by optimizing a benchmark function. Most optimization methods in clustering algorithms often offer solutions close to the general optimal value. This study achieves the global optimum value for the criterion function in a shorter time using the minimax distance, Maximum Spanning Tree “MST”, and meta-heuristic algorithms, including Genetic Algorithm “GA” and Particle Swarm Optimization “PSO”. The Fast Path-based Clustering “FPC” algorithm proposed in this paper can find cluster centers correctly in most datasets and quickly perform clustering operations. The FPC does this operation using MST, the minimax distance, and a new hybrid meta-heuristic algorithm… More >

Displaying 1-10 on page 1 of 1574. Per Page