Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (324)
  • Open Access

    ARTICLE

    MWaOA: A Bio-Inspired Metaheuristic Algorithm for Resource Allocation in Internet of Things

    Rekha Phadke1, Abdul Lateef Haroon Phulara Shaik2, Dayanidhi Mohapatra3, Doaa Sami Khafaga4,*, Eman Abdullah Aldakheel4, N. Sathyanarayana5

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-26, 2026, DOI:10.32604/cmc.2025.067564 - 09 December 2025

    Abstract Recently, the Internet of Things (IoT) technology has been utilized in a wide range of services and applications which significantly transforms digital ecosystems through seamless interconnectivity between various smart devices. Furthermore, the IoT plays a key role in multiple domains, including industrial automation, smart homes, and intelligent transportation systems. However, an increasing number of connected devices presents significant challenges related to efficient resource allocation and system responsiveness. To address these issue, this research proposes a Modified Walrus Optimization Algorithm (MWaOA) for effective resource management in smart IoT systems. In the proposed MWaOA, a crowding process… More >

  • Open Access

    ARTICLE

    GSLDWOA: A Feature Selection Algorithm for Intrusion Detection Systems in IIoT

    Wanwei Huang1,*, Huicong Yu1, Jiawei Ren2, Kun Wang3, Yanbu Guo1, Lifeng Jin4

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-24, 2026, DOI:10.32604/cmc.2025.068493 - 10 November 2025

    Abstract Existing feature selection methods for intrusion detection systems in the Industrial Internet of Things often suffer from local optimality and high computational complexity. These challenges hinder traditional IDS from effectively extracting features while maintaining detection accuracy. This paper proposes an industrial Internet of Things intrusion detection feature selection algorithm based on an improved whale optimization algorithm (GSLDWOA). The aim is to address the problems that feature selection algorithms under high-dimensional data are prone to, such as local optimality, long detection time, and reduced accuracy. First, the initial population’s diversity is increased using the Gaussian Mutation More >

  • Open Access

    ARTICLE

    Federated Multi-Label Feature Selection via Dual-Layer Hybrid Breeding Cooperative Particle Swarm Optimization with Manifold and Sparsity Regularization

    Songsong Zhang1, Huazhong Jin1,2,*, Zhiwei Ye1,2, Jia Yang1,2, Jixin Zhang1,2, Dongfang Wu1,2, Xiao Zheng1,2, Dingfeng Song1

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-19, 2026, DOI:10.32604/cmc.2025.068044 - 10 November 2025

    Abstract Multi-label feature selection (MFS) is a crucial dimensionality reduction technique aimed at identifying informative features associated with multiple labels. However, traditional centralized methods face significant challenges in privacy-sensitive and distributed settings, often neglecting label dependencies and suffering from low computational efficiency. To address these issues, we introduce a novel framework, Fed-MFSDHBCPSO—federated MFS via dual-layer hybrid breeding cooperative particle swarm optimization algorithm with manifold and sparsity regularization (DHBCPSO-MSR). Leveraging the federated learning paradigm, Fed-MFSDHBCPSO allows clients to perform local feature selection (FS) using DHBCPSO-MSR. Locally selected feature subsets are encrypted with differential privacy (DP) and transmitted… More >

  • Open Access

    ARTICLE

    DeepNeck: Bottleneck Assisted Customized Deep Convolutional Neural Networks for Diagnosing Gastrointestinal Tract Disease

    Sidra Naseem1, Rashid Jahangir1,*, Nazik Alturki2, Faheem Shehzad3, Muhammad Sami Ullah4

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2481-2501, 2025, DOI:10.32604/cmes.2025.072575 - 26 November 2025

    Abstract Diagnosing gastrointestinal tract diseases is a critical task requiring accurate and efficient methodologies. While deep learning models have significantly advanced medical image analysis, challenges such as imbalanced datasets and redundant features persist. This study proposes a novel framework that customizes two deep learning models, NasNetMobile and ResNet50, by incorporating bottleneck architectures, named as NasNeck and ResNeck, to enhance feature extraction. The feature vectors are fused into a combined vector, which is further optimized using an improved Whale Optimization Algorithm to minimize redundancy and improve discriminative power. The optimized feature vector is then classified using artificial… More >

  • Open Access

    ARTICLE

    Rheological Properties of Solid Rocket Propellants Based on Machine Learning

    Minghai Zheng1, Zhaoxia Cui1,*, Jiang Liu1, Jianjun Li2

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 431-455, 2025, DOI:10.32604/cmes.2025.071913 - 30 October 2025

    Abstract To accurately depict the strong nonlinear relationship between the viscosity of propellant slurry and shear rate, premix time, and temperature, and to improve the prediction accuracy, based on the sample preparation and experimental measurement of a certain type of propellant, viscosity data under multiple working conditions were obtained as the basic data for the research. By comparing typical models such as support vector regression and random forest, it was found that although the traditional BP neural network was superior to the both, its accuracy was still insufficient. Based on this, a BP model co-optimized by… More >

  • Open Access

    ARTICLE

    Short-Term Wind Power Prediction Based on Optimized VMD and LSTM

    Xinjian Li1, Yu Zhang1,2,*, Zewen Wang1, Zhenyun Song1

    Energy Engineering, Vol.122, No.11, pp. 4603-4619, 2025, DOI:10.32604/ee.2025.065799 - 27 October 2025

    Abstract Power prediction has been critical in large-scale wind power grid connections. However, traditional wind power prediction methods have long suffered from problems, for instance low prediction accuracy and poor reliability. For this purpose, a hybrid prediction model (VMD-LSTM-Attention) has been proposed, which integrates the variational modal decomposition (VMD), the long short-term memory (LSTM), and the attention mechanism (Attention), and has been optimized by improved dung beetle optimization algorithm (IDBO). Firstly, the algorithm’s performance has been significantly enhanced through the implementation of three key strategies, namely the elite group strategy of the Logistic-Tent map, the nonlinear… More >

  • Open Access

    ARTICLE

    Solar Radiation Prediction Using Boosted Coyote Optimization Algorithm with Deep Learning for Energy Management

    Shekaina Justin1,*, Wafaa Saleh2, Hind Mohammed Albalawi3, J. Shermina4

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 5469-5487, 2025, DOI:10.32604/cmc.2025.066888 - 23 October 2025

    Abstract Solar radiation is the main source of energy on Earth and plays a major role in the hydrological cycles, surface radiation balance, weather and climate changes, and vegetation photosynthesis. Accurate solar radiation prediction is of paramount importance for both climate research and the solar industry. This prediction includes forecasting techniques and advanced modeling to evaluate the amount of solar energy available at a specific location during a given period. Solar energy is the cheapest form of clean energy, and due to the intermittent nature of the energy, accurate forecasting across multiple timeframes is necessary for… More >

  • Open Access

    ARTICLE

    Dung Beetle Optimization Algorithm Based on Bounded Reflection Optimization and Multi-Strategy Fusion for Multi-UAV Trajectory Planning

    Weicong Tan1,#, Qiwu Wu2,3,#,*, Lingzhi Jiang1, Tao Tong2, Yunchen Su2

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 3621-3652, 2025, DOI:10.32604/cmc.2025.068781 - 23 September 2025

    Abstract This study introduces a novel algorithm known as the dung beetle optimization algorithm based on bounded reflection optimization and multi-strategy fusion (BFDBO), which is designed to tackle the complexities associated with multi-UAV collaborative trajectory planning in intricate battlefield environments. Initially, a collaborative planning cost function for the multi-UAV system is formulated, thereby converting the trajectory planning challenge into an optimization problem. Building on the foundational dung beetle optimization (DBO) algorithm, BFDBO incorporates three significant innovations: a boundary reflection mechanism, an adaptive mixed exploration strategy, and a dynamic multi-scale mutation strategy. These enhancements are intended to… More >

  • Open Access

    ARTICLE

    An Inverted Pendulum System Control with Fuzzy Linear Quadratic Regulator Method: Experimental Validation

    Tayfun Abut*

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 4023-4042, 2025, DOI:10.32604/cmc.2025.066920 - 23 September 2025

    Abstract In this study, a dynamic model for an inverted pendulum system (IPS) attached to a car is created, and two different control methods are applied to control the system. The designed control algorithms aim to stabilize the pendulum arms in the upright position and the car to reach the equilibrium position. Grey Wolf Optimization-based Linear Quadratic Regulator (GWO-LQR) and GWO-based Fuzzy LQR (FLQR) control algorithms are used in the control process. To improve the performance of the LQR and FLQR methods, the optimum values of the coefficients corresponding to the foot points of the membership… More >

  • Open Access

    ARTICLE

    Narwhal Optimizer: A Nature-Inspired Optimization Algorithm for Solving Complex Optimization Problems

    Raja Masadeh1, Omar Almomani2,*, Abdullah Zaqebah1, Shayma Masadeh3, Kholoud Alshqurat3, Ahmad Sharieh4, Nesreen Alsharman5

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 3709-3737, 2025, DOI:10.32604/cmc.2025.066797 - 23 September 2025

    Abstract This research presents a novel nature-inspired metaheuristic optimization algorithm, called the Narwhale Optimization Algorithm (NWOA). The algorithm draws inspiration from the foraging and prey-hunting strategies of narwhals, “unicorns of the sea”, particularly the use of their distinctive spiral tusks, which play significant roles in hunting, searching prey, navigation, echolocation, and complex social interaction. Particularly, the NWOA imitates the foraging strategies and techniques of narwhals when hunting for prey but focuses mainly on the cooperative and exploratory behavior shown during group hunting and in the use of their tusks in sensing and locating prey under the… More >

Displaying 1-10 on page 1 of 324. Per Page