Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (7)
  • Open Access


    Deep Learning Applied to Computational Mechanics: A Comprehensive Review, State of the Art, and the Classics

    Loc Vu-Quoc1,*, Alexander Humer2

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.2, pp. 1069-1343, 2023, DOI:10.32604/cmes.2023.028130

    Abstract Three recent breakthroughs due to AI in arts and science serve as motivation: An award winning digital image, protein folding, fast matrix multiplication. Many recent developments in artificial neural networks, particularly deep learning (DL), applied and relevant to computational mechanics (solid, fluids, finite-element technology) are reviewed in detail. Both hybrid and pure machine learning (ML) methods are discussed. Hybrid methods combine traditional PDE discretizations with ML methods either (1) to help model complex nonlinear constitutive relations, (2) to nonlinearly reduce the model order for efficient simulation (turbulence), or (3) to accelerate the simulation by predicting certain components in the traditional… More >

  • Open Access


    Open-Source Codes of Topology Optimization: A Summary for Beginners to Start Their Research

    Yingjun Wang1,*, Xinqing Li1, Kai Long2, Peng Wei3

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.1, pp. 1-34, 2023, DOI:10.32604/cmes.2023.027603

    Abstract Topology optimization (TO), a numerical technique to find the optimal material layout with a given design domain, has attracted interest from researchers in the field of structural optimization in recent years. For beginners, opensource codes are undoubtedly the best alternative to learning TO, which can elaborate the implementation of a method in detail and easily engage more people to employ and extend the method. In this paper, we present a summary of various open-source codes and related literature on TO methods, including solid isotropic material with penalization (SIMP), evolutionary method, level set method (LSM), moving morphable components/voids (MMC/MMV) methods, multiscale… More > Graphic Abstract

    Open-Source Codes of Topology Optimization: A Summary for Beginners to Start Their Research

  • Open Access


    Novel Optimized Feature Selection Using Metaheuristics Applied to Physical Benchmark Datasets

    Doaa Sami Khafaga1, El-Sayed M. El-kenawy2, Fadwa Alrowais1,*, Sunil Kumar3, Abdelhameed Ibrahim4, Abdelaziz A. Abdelhamid5,6

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 4027-4041, 2023, DOI:10.32604/cmc.2023.033039

    Abstract In data mining and machine learning, feature selection is a critical part of the process of selecting the optimal subset of features based on the target data. There are 2n potential feature subsets for every n features in a dataset, making it difficult to pick the best set of features using standard approaches. Consequently, in this research, a new metaheuristics-based feature selection technique based on an adaptive squirrel search optimization algorithm (ASSOA) has been proposed. When using metaheuristics to pick features, it is common for the selection of features to vary across runs, which can lead to instability. Because of… More >

  • Open Access


    Phishing Websites Detection by Using Optimized Stacking Ensemble Model

    Zeyad Ghaleb Al-Mekhlafi1, Badiea Abdulkarem Mohammed1,2,*, Mohammed Al-Sarem3, Faisal Saeed3, Tawfik Al-Hadhrami4, Mohammad T. Alshammari1, Abdulrahman Alreshidi1, Talal Sarheed Alshammari1

    Computer Systems Science and Engineering, Vol.41, No.1, pp. 109-125, 2022, DOI:10.32604/csse.2022.020414

    Abstract Phishing attacks are security attacks that do not affect only individuals’ or organizations’ websites but may affect Internet of Things (IoT) devices and networks. IoT environment is an exposed environment for such attacks. Attackers may use thingbots software for the dispersal of hidden junk emails that are not noticed by users. Machine and deep learning and other methods were used to design detection methods for these attacks. However, there is still a need to enhance detection accuracy. Optimization of an ensemble classification method for phishing website (PW) detection is proposed in this study. A Genetic Algorithm (GA) was used for… More >

  • Open Access


    Design of Optimal Controllers for Automatic Voltage Regulation Using Archimedes Optimizer

    Ahmed Agwa1,2,*, Salah Elsayed3, Mahrous Ahmed3

    Intelligent Automation & Soft Computing, Vol.31, No.2, pp. 799-815, 2022, DOI:10.32604/iasc.2022.019887

    Abstract Automatic voltage regulators (AVRs) in electrical grids preserve the voltage at its nominal value. Regulating the parameters of proportional–integral–derivative (PID) controllers used for AVRs is a nonlinear optimization issue. The objective function is designed to minimize the settling time, rise time, and overshoot of step response of resultant voltage with subjugation to constraints of PID controller parameters. In this study, we suggest using an Archimedes optimization algorithm (AOA) to tune the parameters of the PID controllers for AVRs. In addition, using an AOA to optimize the parameters of a fractional-order PID (FOPID) controller and a PID plus second-order derivative (PIDD2)… More >

  • Open Access


    Prediction of the Corrosion Rate of Al–Si Alloys Using Optimal Regression Methods

    D. Saber1,*, Ibrahim B. M. Taha2, Kh. Abd El-Aziz3

    Intelligent Automation & Soft Computing, Vol.29, No.3, pp. 757-769, 2021, DOI:10.32604/iasc.2021.018516

    Abstract In this study, optimal regression learner methods were used to predict the corrosion behavior of aluminum–silicon alloys (Al–Si) with various Si ratios in different media. Al–Si alloys with 0, 1%, 8%, 11.2%, and 15% Si were tested in different media with different pH values at different stirring speeds (0, 300, 600, 750, 900, 1050, and 1200 rpm). Corrosion behavior was evaluated via electrochemical potentiodynamic test. The corrosion rates (CRs) obtained from the corrosion tests were utilized in the formation of datasets of various machine regression learner optimization (MRLO) methods, namely, decision tree, support vector machine, Gaussian process regression, and ensemble… More >

  • Open Access


    The Implementation of Optimization Methods for Contrast Enhancement

    Ahmet Elbir1,∗, Hamza Osman Ilhan1, Nizamettin Aydin1

    Computer Systems Science and Engineering, Vol.34, No.2, pp. 101-107, 2019, DOI:10.32604/csse.2019.34.101

    Abstract The performances of the multivariate techniques are directly related to the variable selection process, which is time consuming and requires resources for testing each possible parameter to achieve the best results. Therefore, optimization methods for variable selection process have been proposed in the literature to find the optimal solution in short time by using less system resources. Contrast enhancement is the one of the most important and the parameter dependent image enhancement technique. In this study, two optimization methods are employed for the variable selection for the contrast enhancement technique. Particle swarm optimization (PSO) and artificial bee colony (ABC) optimization… More >

Displaying 1-10 on page 1 of 7. Per Page