Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (178)
  • Open Access

    ARTICLE

    Influence of Layer Height on Thermal Buoyancy Convection in A System with Two Superposed Fluids Confined in A Parallelepipedic Cavity

    Sunil Punjabi1, K. Muralidhar2, P. K. Panigrahi2

    FDMP-Fluid Dynamics & Materials Processing, Vol.2, No.2, pp. 95-106, 2006, DOI:10.3970/fdmp.2006.002.095

    Abstract Convection in a differentially heated two-layer system consisting of air and water was studied experimentally, using laser-interferometry. The cavity used for flow visualization was square in cross-section and rectangular in-plan having dimensions of 447 × 32 × 32 mm3. Experiments performed over different layer thicknesses of water filled in a square cross-section cavity, the rest being air, are reported in the present work. The following temperature differences for each layer height were imposed across the hot and the cold walls of the superposed fluid layers: (i) ΔT=10K and (ii)ΔT =18 K. The present study was aimed at understanding the following… More >

  • Open Access

    ARTICLE

    Numerical and Analytical Analysis of the Thermosolutal Convection in an Heterogeneous Porous Cavity

    K. Choukairy1, R. Bennacer2

    FDMP-Fluid Dynamics & Materials Processing, Vol.8, No.2, pp. 155-172, 2012, DOI:10.3970/fdmp.2012.008.155

    Abstract This study carries the natural thermosolutal convection induced in heterogeneous porous media. The configuration considered is cartesian. The horizontal and vertical walls are submitted to different mass and heat transfer. The equations which govern this type of flow are solved numerically by using the finite volume method. The flow is considered two-dimensional and laminar. The model of Darcy and the approximation of the Boussinesq are taken into account. The parameters which control the problem are the thermal Darcy-Rayleigh number, Rt, the buoyancy ratio, N, the Lewis number, Le, the aspect ratio of the enclosure, A and the local permeability ratio,… More >

  • Open Access

    ARTICLE

    On the Nature and Structure of Possible Three-dimensional Steady Flows in Closed and Open Parallelepipedic and Cubical Containers under Different Heating Conditions and Driving Forces.

    Marcello Lappa1, 2

    FDMP-Fluid Dynamics & Materials Processing, Vol.1, No.1, pp. 1-20, 2005, DOI:10.3970/fdmp.2005.001.001

    Abstract Possible natural transport mechanisms in cubical and shallow cavities with different heating conditions (from below or from the side) are investigated by means of numerical solution of the non-linear model equations and multiprocessor computations. Attention is focused on a variety of three-dimensional steady effects that can arise in such configurations in the case of low-Pr liquids (silicon melt) even for relatively small values of the temperature gradient due to localized boundary effects and/or true instabilities of the flow. Such aspects are still poorly known or completely ignored owing to the fact that most of the existing experiments focused on the… More >

  • Open Access

    ARTICLE

    Quantum Homomorphic Signature with Repeatable Verification

    Tao Shang1,*, Zhuang Pei2, Ranyiliu Chen3, Jianwei Liu1

    CMC-Computers, Materials & Continua, Vol.59, No.1, pp. 149-165, 2019, DOI:10.32604/cmc.2019.05360

    Abstract In January 2015, the first quantum homomorphic signature scheme was proposed creatively. However, only one verifier is allowed to verify a signature once in this scheme. In order to support repeatable verification for general scenario, we propose a new quantum homomorphic signature scheme with repeatable verification by introducing serial verification model and parallel verification model. Serial verification model solves the problem of signature verification by combining key distribution and Bell measurement. Parallel verification model solves the problem of signature duplication by logically treating one particle of an EPR pair as a quantum signature and physically preparing a new EPR pair.… More >

  • Open Access

    ARTICLE

    Fast and High-Resolution Optical Inspection System for In-Line Detection and Labeling of Surface Defects

    M. Chang1,2,3, Y. C. Chou1,2, P. T. Lin1,2, J. L. Gabayno2,4

    CMC-Computers, Materials & Continua, Vol.42, No.2, pp. 125-140, 2014, DOI:10.3970/cmc.2014.042.125

    Abstract Automated optical inspection systems installed in production lines help ensure high throughput by speeding up inspection of defects that are otherwise difficult to detect using the naked eye. However, depending on the size and surface properties of the products such as micro-cracks on touchscreen panels glass cover, the detection speed and accuracy are limited by the imaging module and lighting technique. Therefore the current inspection methods are still delegated to a few qualified personnel whose limited capacity has been a huge tradeoff for high volume production. In this study, an automated optical technology for in-line surface defect inspection is developed… More >

  • Open Access

    ARTICLE

    Parallel Finite Element Method and Time Stepping Control for Non-Isothermal Poro-Elastic Problems

    Wenqing Wang1, Thomas Schnicke2, Olaf Kolditz3

    CMC-Computers, Materials & Continua, Vol.21, No.3, pp. 217-236, 2011, DOI:10.3970/cmc.2011.021.217

    Abstract This work focuses on parallel finite element simulation of thermal hydraulic and mechanical (THM) coupled processes in porous media, which is a common phenomenon in geological applications such as nuclear waste repository and CO2 storage facilities. The Galerkin finite element method is applied to solve the derived partial differential equations. To deal with the coupling terms among the equations, the momentum equation is solved individually in a monolithic manner, and moreover their solving processes are incorporated into the solving processes of nonisothermal hydraulic equation and heat transport equation in a staggered manner. The computation task arising from the present method… More >

  • Open Access

    ARTICLE

    Buckling Analysis of Plates Stiffened by Parallel Beams

    E.J. Sapountzakis1, V.G. Mokos1

    CMC-Computers, Materials & Continua, Vol.12, No.2, pp. 157-196, 2009, DOI:10.3970/cmc.2009.012.157

    Abstract In this paper a general solution for the elastic buckling analysis of plates stiffened by arbitrarily placed parallel beams of arbitrary doubly symmetric cross section subjected to an arbitrary inplane loading is presented. According to the proposed model, the stiffening beams are isolated from the plate by sections in the lower outer surface of the plate, taking into account the arising tractions in all directions at the fictitious interfaces. These tractions are integrated with respect to each half of the interface width resulting two interface lines, along which the loading of the beams as well as the additional loading of… More >

  • Open Access

    ARTICLE

    A First-Principles Computational Framework for Liquid Mineral Systems

    B.B. Karki1, D. Bhattarai1, L. Stixrude2

    CMC-Computers, Materials & Continua, Vol.3, No.3, pp. 107-118, 2006, DOI:10.3970/cmc.2006.003.107

    Abstract Computer modeling of liquid phase poses tremendous challenge: It requires a relatively large simulation size, long simulation time and accurate interatomic interaction and as such, it produces massive amounts of data. Recent advances in hardware and software have made it possible to accurately simulate the liquid phase. This paper reports the details of methodology used in the context of liquid simulations and subsequent analysis of the output data. For illustration purpose, we consider the results for the liquid phases of two geophysically relevant materials, namely MgO and MgSiO3. The simulations are performed using the parallel first-principles molecular dynamics (FPMD) technique… More >

Displaying 171-180 on page 18 of 178. Per Page