Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (101)
  • Open Access


    Sensitivity Analysis of Electromagnetic Scattering from Dielectric Targets with Polynomial Chaos Expansion and Method of Moments

    Yujing Ma1,4, Zhongwang Wang2, Jieyuan Zhang3, Ruijin Huo1,4, Xiaohui Yuan1,4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 2079-2102, 2024, DOI:10.32604/cmes.2024.048488

    Abstract In this paper, an adaptive polynomial chaos expansion method (PCE) based on the method of moments (MoM) is proposed to construct surrogate models for electromagnetic scattering and further sensitivity analysis. The MoM is applied to accurately solve the electric field integral equation (EFIE) of electromagnetic scattering from homogeneous dielectric targets. Within the bistatic radar cross section (RCS) as the research object, the adaptive PCE algorithm is devoted to selecting the appropriate order to construct the multivariate surrogate model. The corresponding sensitivity results are given by the further derivative operation, which is compared with those of More >

  • Open Access


    Real-Time Prediction of Urban Traffic Problems Based on Artificial Intelligence-Enhanced Mobile Ad Hoc Networks (MANETS)

    Ahmed Alhussen1, Arshiya S. Ansari2,*

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 1903-1923, 2024, DOI:10.32604/cmc.2024.049260

    Abstract Traffic in today’s cities is a serious problem that increases travel times, negatively affects the environment, and drains financial resources. This study presents an Artificial Intelligence (AI) augmented Mobile Ad Hoc Networks (MANETs) based real-time prediction paradigm for urban traffic challenges. MANETs are wireless networks that are based on mobile devices and may self-organize. The distributed nature of MANETs and the power of AI approaches are leveraged in this framework to provide reliable and timely traffic congestion forecasts. This study suggests a unique Chaotic Spatial Fuzzy Polynomial Neural Network (CSFPNN) technique to assess real-time data… More >

  • Open Access


    Optimal Shape Factor and Fictitious Radius in the MQ-RBF: Solving Ill-Posed Laplacian Problems

    Chein-Shan Liu1, Chung-Lun Kuo1, Chih-Wen Chang2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 3189-3208, 2024, DOI:10.32604/cmes.2023.046002

    Abstract To solve the Laplacian problems, we adopt a meshless method with the multiquadric radial basis function (MQ-RBF) as a basis whose center is distributed inside a circle with a fictitious radius. A maximal projection technique is developed to identify the optimal shape factor and fictitious radius by minimizing a merit function. A sample function is interpolated by the MQ-RBF to provide a trial coefficient vector to compute the merit function. We can quickly determine the optimal values of the parameters within a preferred rage using the golden section search algorithm. The novel method provides the More >

  • Open Access


    Novel Investigation of Stochastic Fractional Differential Equations Measles Model via the White Noise and Global Derivative Operator Depending on Mittag-Leffler Kernel

    Saima Rashid1,2,*, Fahd Jarad3,4

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 2289-2327, 2024, DOI:10.32604/cmes.2023.028773

    Abstract Because of the features involved with their varied kernels, differential operators relying on convolution formulations have been acknowledged as effective mathematical resources for modeling real-world issues. In this paper, we constructed a stochastic fractional framework of measles spreading mechanisms with dual medication immunization considering the exponential decay and Mittag-Leffler kernels. In this approach, the overall population was separated into five cohorts. Furthermore, the descriptive behavior of the system was investigated, including prerequisites for the positivity of solutions, invariant domain of the solution, presence and stability of equilibrium points, and sensitivity analysis. We included a stochastic More >

  • Open Access


    Improving Video Watermarking through Galois Field GF(24) Multiplication Tables with Diverse Irreducible Polynomials and Adaptive Techniques

    Yasmin Alaa Hassan1,*, Abdul Monem S. Rahma2

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 1423-1442, 2024, DOI:10.32604/cmc.2023.046149

    Abstract Video watermarking plays a crucial role in protecting intellectual property rights and ensuring content authenticity. This study delves into the integration of Galois Field (GF) multiplication tables, especially GF(24), and their interaction with distinct irreducible polynomials. The primary aim is to enhance watermarking techniques for achieving imperceptibility, robustness, and efficient execution time. The research employs scene selection and adaptive thresholding techniques to streamline the watermarking process. Scene selection is used strategically to embed watermarks in the most vital frames of the video, while adaptive thresholding methods ensure that the watermarking process adheres to imperceptibility criteria, maintaining… More >

  • Open Access


    A Novel Method for Linear Systems of Fractional Ordinary Differential Equations with Applications to Time-Fractional PDEs

    Sergiy Reutskiy1, Yuhui Zhang2,*, Jun Lu3,*, Ciren Pubu4

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 1583-1612, 2024, DOI:10.32604/cmes.2023.044878

    Abstract This paper presents an efficient numerical technique for solving multi-term linear systems of fractional ordinary differential equations (FODEs) which have been widely used in modeling various phenomena in engineering and science. An approximate solution of the system is sought in the form of the finite series over the Müntz polynomials. By using the collocation procedure in the time interval, one gets the linear algebraic system for the coefficient of the expansion which can be easily solved numerically by a standard procedure. This technique also serves as the basis for solving the time-fractional partial differential equations More >

  • Open Access


    The Method of Moments for Electromagnetic Scattering Analysis Accelerated by the Polynomial Chaos Expansion in Infinite Domains

    Yujing Ma1,*, Leilei Chen2,3, Haojie Lian3,4, Zhongwang Wang2,3

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.28, No.1, pp. 1-1, 2023, DOI:10.32604/icces.2023.010585

    Abstract An efficient method of moments (MoM) based on polynomial chaos expansion(PCE) is applied to quickly calculate the electromagnetic scattering problems. The triangle basic functions are used to discretize the surface integral equations. The PCE is utilized to accelerate the MoM by constructing a surrogate model for univariate and bivariate analysis[1]. The mathematical expressions of the surrogate model for the radar cross-section (RCS) are established by considering uncertain parameters such as bistatic angle, incident frequency, and dielectric constant[2,3]. By using the example of a scattering cylinder with analytical solution, it is verified that the MoM accelerated More >

  • Open Access


    Fragile Points Method for Modeling Complex Structural Failure

    Mingjing Li1,*, Leiting Dong1, Satya N. Atluri2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.4, pp. 1-2, 2023, DOI:10.32604/icces.2023.09689

    Abstract The Fragile Points Method (FPM) is a discontinuous meshless method based on the Galerkin weak form [1]. In the FPM, the problem domain is discretized by spatial points and subdomains, and the displacement trial function of each subdomain is derived based on the points within the support domain. For this reason, the FPM doesn’t suffer from the mesh distortion and is suitable to model complex structural deformations. Furthermore, similar to the discontinuous Galerkin finite element method, the displacement trial functions used in the FPM is piece-wise continuous, and the numerical flux is introduced across each… More >

  • Open Access


    A Novel Accurate Method for Multi-Term Time-Fractional Nonlinear Diffusion Equations in Arbitrary Domains

    Tao Hu1, Cheng Huang2, Sergiy Reutskiy3,*, Jun Lu4, Ji Lin5,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.2, pp. 1521-1548, 2024, DOI:10.32604/cmes.2023.030449

    Abstract A novel accurate method is proposed to solve a broad variety of linear and nonlinear (1+1)-dimensional and (2+1)- dimensional multi-term time-fractional partial differential equations with spatial operators of anisotropic diffusivity. For (1+1)-dimensional problems, analytical solutions that satisfy the boundary requirements are derived. Such solutions are numerically calculated using the trigonometric basis approximation for (2+1)-dimensional problems. With the aid of these analytical or numerical approximations, the original problems can be converted into the fractional ordinary differential equations, and solutions to the fractional ordinary differential equations are approximated by modified radial basis functions with time-dependent coefficients. An More >

  • Open Access


    Bifurcation Analysis of a Nonlinear Vibro-Impact System with an Uncertain Parameter via OPA Method

    Dongmei Huang1, Dang Hong2, Wei Li1,*, Guidong Yang1, Vesna Rajic3

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 509-524, 2024, DOI:10.32604/cmes.2023.029215

    Abstract In this paper, the bifurcation properties of the vibro-impact systems with an uncertain parameter under the impulse and harmonic excitations are investigated. Firstly, by means of the orthogonal polynomial approximation (OPA) method, the nonlinear damping and stiffness are expanded into the linear combination of the state variable. The condition for the appearance of the vibro-impact phenomenon is to be transformed based on the calculation of the mean value. Afterwards, the stochastic vibro-impact system can be turned into an equivalent high-dimensional deterministic non-smooth system. Two different Poincaré sections are chosen to analyze the bifurcation properties and… More >

Displaying 1-10 on page 1 of 101. Per Page