Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (260)
  • Open Access

    ARTICLE

    Practical Privacy-Preserving ROI Encryption System for Surveillance Videos Supporting Selective Decryption

    Chan Hyeong Cho, Hyun Min Song*, Taek-Young Youn*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.3, pp. 1911-1931, 2024, DOI:10.32604/cmes.2024.053430 - 31 October 2024

    Abstract With the advancement of video recording devices and network infrastructure, we use surveillance cameras to protect our valuable assets. This paper proposes a novel system for encrypting personal information within recorded surveillance videos to enhance efficiency and security. The proposed method leverages Dlib’s CNN-based facial recognition technology to identify Regions of Interest (ROIs) within the video, linking these ROIs to generate unique IDs. These IDs are then combined with a master key to create entity-specific keys, which are used to encrypt the ROIs within the video. This system supports selective decryption, effectively protecting personal information More >

  • Open Access

    ARTICLE

    Privacy-Preserving and Lightweight V2I and V2V Authentication Protocol Using Blockchain Technology

    Muhammad Imran Ghafoor1, Awad Bin Naeem2,*, Biswaranjan Senapati3, Md. Sakiul Islam Sudman4, Satyabrata Pradhan5, Debabrata Das6, Friban Almeida6, Hesham A. Sakr7

    Intelligent Automation & Soft Computing, Vol.39, No.5, pp. 783-803, 2024, DOI:10.32604/iasc.2024.050819 - 31 October 2024

    Abstract The confidentiality of pseudonymous authentication and secure data transmission is essential for the protection of information and mitigating risks posed by compromised vehicles. The Internet of Vehicles has meaningful applications, enabling connected and autonomous vehicles to interact with infrastructure, sensors, computing nodes, humans, and fellow vehicles. Vehicular hoc networks play an essential role in enhancing driving efficiency and safety by reducing traffic congestion while adhering to cryptographic security standards. This paper introduces a privacy-preserving Vehicle-to-Infrastructure authentication, utilizing encryption and the Moore curve. The proposed approach enables a vehicle to deduce the planned itinerary of Roadside More >

  • Open Access

    ARTICLE

    Blockchain-Enabled Federated Learning with Differential Privacy for Internet of Vehicles

    Chi Cui1,2, Haiping Du2, Zhijuan Jia1,*, Yuchu He1, Lipeng Wang1

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1581-1593, 2024, DOI:10.32604/cmc.2024.055557 - 15 October 2024

    Abstract The rapid evolution of artificial intelligence (AI) technologies has significantly propelled the advancement of the Internet of Vehicles (IoV). With AI support, represented by machine learning technology, vehicles gain the capability to make intelligent decisions. As a distributed learning paradigm, federated learning (FL) has emerged as a preferred solution in IoV. Compared to traditional centralized machine learning, FL reduces communication overhead and improves privacy protection. Despite these benefits, FL still faces some security and privacy concerns, such as poisoning attacks and inference attacks, prompting exploration into blockchain integration to enhance its security posture. This paper… More >

  • Open Access

    ARTICLE

    Cyber Security within Smart Cities: A Comprehensive Study and a Novel Intrusion Detection-Based Approach

    Mehdi Houichi1,*, Faouzi Jaidi1,2, Adel Bouhoula3

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 393-441, 2024, DOI:10.32604/cmc.2024.054007 - 15 October 2024

    Abstract The expansion of smart cities, facilitated by digital communications, has resulted in an enhancement of the quality of life and satisfaction among residents. The Internet of Things (IoT) continually generates vast amounts of data, which is subsequently analyzed to offer services to residents. The growth and development of IoT have given rise to a new paradigm. A smart city possesses the ability to consistently monitor and utilize the physical environment, providing intelligent services such as energy, transportation, healthcare, and entertainment for both residents and visitors. Research on the security and privacy of smart cities is… More >

  • Open Access

    REVIEW

    Enhancing Internet of Things Intrusion Detection Using Artificial Intelligence

    Shachar Bar1, P. W. C. Prasad2, Md Shohel Sayeed3,*

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1-23, 2024, DOI:10.32604/cmc.2024.053861 - 15 October 2024

    Abstract Escalating cyber security threats and the increased use of Internet of Things (IoT) devices require utilisation of the latest technologies available to supply adequate protection. The aim of Intrusion Detection Systems (IDS) is to prevent malicious attacks that corrupt operations and interrupt data flow, which might have significant impact on critical industries and infrastructure. This research examines existing IDS, based on Artificial Intelligence (AI) for IoT devices, methods, and techniques. The contribution of this study consists of identification of the most effective IDS systems in terms of accuracy, precision, recall and F1-score; this research also… More >

  • Open Access

    ARTICLE

    Message Verification Protocol Based on Bilinear Pairings and Elliptic Curves for Enhanced Security in Vehicular Ad Hoc Networks

    Vincent Omollo Nyangaresi1,2, Arkan A. Ghaib3, Hend Muslim Jasim4, Zaid Ameen Abduljabbar4,5,6,*, Junchao Ma5,*, Mustafa A. Al Sibahee7,8, Abdulla J. Y. Aldarwish4, Ali Hasan Ali9,10, Husam A. Neamah11

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1029-1057, 2024, DOI:10.32604/cmc.2024.053854 - 15 October 2024

    Abstract Vehicular ad hoc networks (VANETs) provide intelligent navigation and efficient route management, resulting in time savings and cost reductions in the transportation sector. However, the exchange of beacons and messages over public channels among vehicles and roadside units renders these networks vulnerable to numerous attacks and privacy violations. To address these challenges, several privacy and security preservation protocols based on blockchain and public key cryptography have been proposed recently. However, most of these schemes are limited by a long execution time and massive communication costs, which make them inefficient for on-board units (OBUs). Additionally, some… More >

  • Open Access

    ARTICLE

    Privacy-Preserving Large-Scale AI Models for Intelligent Railway Transportation Systems: Hierarchical Poisoning Attacks and Defenses in Federated Learning

    Yongsheng Zhu1,2,*, Chong Liu3,4, Chunlei Chen5, Xiaoting Lyu3,4, Zheng Chen3,4, Bin Wang6, Fuqiang Hu3,4, Hanxi Li3,4, Jiao Dai3,4, Baigen Cai1, Wei Wang3,4

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1305-1325, 2024, DOI:10.32604/cmes.2024.054820 - 27 September 2024

    Abstract The development of Intelligent Railway Transportation Systems necessitates incorporating privacy-preserving mechanisms into AI models to protect sensitive information and enhance system efficiency. Federated learning offers a promising solution by allowing multiple clients to train models collaboratively without sharing private data. However, despite its privacy benefits, federated learning systems are vulnerable to poisoning attacks, where adversaries alter local model parameters on compromised clients and send malicious updates to the server, potentially compromising the global model’s accuracy. In this study, we introduce PMM (Perturbation coefficient Multiplied by Maximum value), a new poisoning attack method that perturbs model More >

  • Open Access

    ARTICLE

    An Efficient and Secure Privacy-Preserving Federated Learning Framework Based on Multiplicative Double Privacy Masking

    Cong Shen1,*, Wei Zhang1,2,*, Tanping Zhou1,2, Yiming Zhang1, Lingling Zhang3

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4729-4748, 2024, DOI:10.32604/cmc.2024.054434 - 12 September 2024

    Abstract With the increasing awareness of privacy protection and the improvement of relevant laws, federal learning has gradually become a new choice for cross-agency and cross-device machine learning. In order to solve the problems of privacy leakage, high computational overhead and high traffic in some federated learning schemes, this paper proposes a multiplicative double privacy mask algorithm which is convenient for homomorphic addition aggregation. The combination of homomorphic encryption and secret sharing ensures that the server cannot compromise user privacy from the private gradient uploaded by the participants. At the same time, the proposed TQRR (Top-Q-Random-R) More >

  • Open Access

    REVIEW

    A Review on Security and Privacy Issues Pertaining to Cyber-Physical Systems in the Industry 5.0 Era

    Abdullah Alabdulatif1, Navod Neranjan Thilakarathne2,*, Zaharaddeen Karami Lawal3,4,*

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 3917-3943, 2024, DOI:10.32604/cmc.2024.054150 - 12 September 2024

    Abstract The advent of Industry 5.0 marks a transformative era where Cyber-Physical Systems (CPSs) seamlessly integrate physical processes with advanced digital technologies. However, as industries become increasingly interconnected and reliant on smart digital technologies, the intersection of physical and cyber domains introduces novel security considerations, endangering the entire industrial ecosystem. The transition towards a more cooperative setting, including humans and machines in Industry 5.0, together with the growing intricacy and interconnection of CPSs, presents distinct and diverse security and privacy challenges. In this regard, this study provides a comprehensive review of security and privacy concerns pertaining… More >

  • Open Access

    ARTICLE

    PARE: Privacy-Preserving Data Reliability Evaluation for Spatial Crowdsourcing in Internet of Things

    Peicong He, Yang Xin*, Yixian Yang

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 3067-3084, 2024, DOI:10.32604/cmc.2024.054777 - 15 August 2024

    Abstract The proliferation of intelligent, connected Internet of Things (IoT) devices facilitates data collection. However, task workers may be reluctant to participate in data collection due to privacy concerns, and task requesters may be concerned about the validity of the collected data. Hence, it is vital to evaluate the quality of the data collected by the task workers while protecting privacy in spatial crowdsourcing (SC) data collection tasks with IoT. To this end, this paper proposes a privacy-preserving data reliability evaluation for SC in IoT, named PARE. First, we design a data uploading format using blockchain More >

Displaying 21-30 on page 3 of 260. Per Page