Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (287)
  • Open Access

    ARTICLE

    A Multi-Block Material Balance Framework for Connectivity Evaluation and Optimization of Water-Drive Gas Reservoirs

    Fankun Meng1,2,3, Yuyang Liu1,2,*, Xiaohua Liu4, Chenlong Duan1,2, Yuhui Zhou1,2,3

    FDMP-Fluid Dynamics & Materials Processing, Vol.22, No.1, 2026, DOI:10.32604/fdmp.2026.075865 - 06 February 2026

    Abstract Carbonate gas reservoirs are often characterized by strong heterogeneity, complex inter-well connectivity, extensive edge or bottom water, and unbalanced production, challenges that are also common in many heterogeneous gas reservoirs with intricate storage and flow behavior. To address these issues within a unified, data-driven framework, this study develops a multi-block material balance model that accounts for inter-block flow and aquifer influx, and is applicable to a wide range of reservoir types. The model incorporates inter-well and well-group conductive connectivity together with pseudo–steady-state aquifer support. The governing equations are solved using a Newton–Raphson scheme, while particle More > Graphic Abstract

    A Multi-Block Material Balance Framework for Connectivity Evaluation and Optimization of Water-Drive Gas Reservoirs

  • Open Access

    ARTICLE

    Flowback Behavior of Deep Coalbed Methane Horizontal Wells

    Wei Sun1,2, Yanqing Feng1,2,*, Yuan Wang1,2, Zengping Zhao1,2, Qian Wang2, Xiangyun Li3, Dong Feng4

    FDMP-Fluid Dynamics & Materials Processing, Vol.22, No.1, 2026, DOI:10.32604/fdmp.2026.075630 - 06 February 2026

    Abstract Significant differences exist between deep and medium-shallow coalbed methane (CBM) reservoirs. The unclear understanding of flowback and production behavior severely constrains the development of deep CBM resources. To address this challenge, guided by the gas-liquid two-phase flow theory in ultra-low permeability reservoirs, and integrating theoretical analysis, numerical simulation, and insights from production practices, this study classifies the flowback and production stages of deep CBM well considering the Daning-Jixian Block, Eastern Ordos Basin as a representative case. We summarize the flowback characteristics for each stage and establish a standard flowback production type curve, aiming to guide… More > Graphic Abstract

    Flowback Behavior of Deep Coalbed Methane Horizontal Wells

  • Open Access

    ARTICLE

    Gas Production and Reservoir Settlement in NGH Deposits under Horizontal-Well Depressurization

    Lijia Li, Shu Liu, Xiaoliang Huang*, Zhilin Qi

    FDMP-Fluid Dynamics & Materials Processing, Vol.22, No.1, 2026, DOI:10.32604/fdmp.2026.073294 - 06 February 2026

    Abstract Identifying geohazards such as landslides and methane leakage is crucial during gas extraction from natural gas hydrate (NGH) reservoirs, and understanding reservoir settlement behavior is central to this assessment. Horizontal wells can enlarge the pressure relief zone within the formation, improving single-well productivity, and are therefore considered a promising approach for NGH development. This study examines the settlement response of hydrate-bearing sediments during depressurization using horizontal wells. A fully coupled thermal, hydraulic, mechanical, and chemical (THMC) model with representative reservoir properties (Shenhu region in the South China Sea) is presented accordingly. The simulations show that More >

  • Open Access

    ARTICLE

    Prediction of Root Zone Temperature Dynamics at Effective Depth on Lettuce Production in Greenhouse Using Sensitivity and Feature Importance Analysis with XGBoost

    Hasan Kaan Kucukerdem*

    Phyton-International Journal of Experimental Botany, Vol.95, No.1, 2026, DOI:10.32604/phyton.2026.074188 - 30 January 2026

    Abstract Root-zone temperature (RZT) strongly affects plant growth, nutrient uptake and tolerance to environmental stress, making its regulation a key challenge in greenhouse cultivation in cold climates. This study aimed to assess the potential of passive techniques, namely black polyethylene mulch and row covers, for modifying RZT dynamics in lettuce (Lactuca sativa L.) production and to evaluate the predictive performance of the eXtreme Gradient Boosting (XGBoost) algorithm. Experiments were conducted in Iğdır, Türkiye, over a 61-day period, with soil temperature continuously monitored at depths of 1–30 cm under mulched and non-mulched conditions, alongside measurements of greenhouse air… More >

  • Open Access

    ARTICLE

    Production of Activated Biochar from Palm Kernel Shell for Methylene Blue Removal

    Sarina Sulaiman*, Muhammad Faris

    Journal of Renewable Materials, Vol.14, No.1, 2026, DOI:10.32604/jrm.2025.02025-0105 - 23 January 2026

    Abstract In this study, Palm kernel shell (PKS) is utilized as a raw material to produce activated biochar as adsorbent for dye removal from wastewater, specifically methylene blue (MB) dye, by utilizing a simplified and cost-effective approach. Production of activated biochar was carried out using both a furnace and a domestic microwave oven without an inert atmosphere. Three samples of palm kernel shell (PKS) based activated biochar labeled as samples A, B and C were carbonized inside the furnace at 800°C for 1 h and then activated using the microwave-heating technique with varying heating times (0,… More >

  • Open Access

    ARTICLE

    Sand Production in Unconsolidated Sandstone: Experimental Analysis of Multiphase Flow During Cyclic Injection and Production

    Tianen Liu1,2, Kun Dai1,2, Shiju Ren1,2, Chuanxiang Zhang1,2, Xiaoling Tang3,*, Jinghong Hu3,*, Yidong Cai3, Jun Lu3

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.12, pp. 2981-2995, 2025, DOI:10.32604/fdmp.2025.073859 - 31 December 2025

    Abstract Many mature onshore oilfields have entered a high-water-cut stage, with reservoir recovery approaching economic limits. Converting these depleted or nearly depleted reservoirs into underground gas storage (UGS) facilities offers an efficient way to leverage their substantial storage potential. During cyclic gas injection and withdrawal, however, the reservoir experiences complex three-phase flow and repeated stress fluctuations, which can induce rock fatigue, inelastic deformation, and ultimately sand production. This study uses controlled physical experiments to simulate sand production in reservoir rocks subjected to alternating gas injection and production under three-phase conditions. After preparing oil-water-saturated cores through waterflooding,… More > Graphic Abstract

    Sand Production in Unconsolidated Sandstone: Experimental Analysis of Multiphase Flow During Cyclic Injection and Production

  • Open Access

    ARTICLE

    A Dynamic IPR Framework for Predicting Shale Oil Well Productivity in the Spontaneous Flow Stage

    Sheng Lei1,2,3, Guanglong Sheng1,2,3,*, Hui Zhao1,2,3

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.12, pp. 3011-3031, 2025, DOI:10.32604/fdmp.2025.073802 - 31 December 2025

    Abstract This study investigates the unsteady flow characteristics of shale oil reservoirs during the depletion development process, with a particular focus on production behavior following fracturing and shut-in stages. Shale reservoirs exhibit distinctive production patterns that differ from traditional oil reservoirs, as their inflow performance does not conform to the classic steady-state relationship. Instead, production is governed by unsteady-state flow behavior, and the combined effects of the wellbore and choke cause the inflow performance curve to evolve dynamically over time. To address these challenges, this study introduces the concept of a “Dynamic IPR curve” and develops… More >

  • Open Access

    REVIEW

    Advances in Grapevine Breeding: Integrating Traditional Selection, Genomic Tools, and Gene Editing Technologies

    Sandra Pérez-Álvarez1,*, Eduardo Fidel Héctor-Ardisana2, Eduardo Sandoval Castro3, Erick H. Ochoa-Chaparro4, Luisa Patricia Uranga-Valencia1

    Phyton-International Journal of Experimental Botany, Vol.94, No.12, pp. 3749-3803, 2025, DOI:10.32604/phyton.2025.072135 - 29 December 2025

    Abstract Grape (Vitis vinifera L.) cultivation has progressed from early domestication and clonal propagation to modern, data-driven breeding that is reshaping viticulture and wine quality. Yet climatic and biotic constraints still impose heavy losses—downy mildew can reduce yields by ≈75% in humid regions and gray mold by 20–50%—sustaining the need for resistant cultivars. Producer selection, interspecific crossing, and formal improvement programs have generated ~10,000 varieties, although only a few dozen dominate global acreage. Conventional breeding has delivered fungus-resistant “PIWI” cultivars that retain ≥85% of the V. vinifera genome; in Austria, national PIWI varieties are gaining acceptance for combined… More >

  • Open Access

    REVIEW

    Transforming Sawdust Waste into Renewable Energy Resources: A Comprehensive Review on Sustainable Bio-Oil and Biochar Production via Thermochemical Processes

    Hauwau Kaoje1,2, Adekunle Adeleke2,3,*, Esther Anosike-Francis2,3, Seun Jesuloluwa2,3, Temitayo Ogedengbe2,3, Hauwa Rasheed2, Jude Okolie4

    Journal of Renewable Materials, Vol.13, No.12, pp. 2375-2430, 2025, DOI:10.32604/jrm.2025.02025-0109 - 23 December 2025

    Abstract The increasing need for sustainable energy and the environmental impacts of reliance on fossil fuels have sparked greater interest in biomass as a renewable energy source. This review provides an in-depth assessment of bio-oil and biochar generation through the pyrolysis of sawdust, a significant variety of lignocellulosic biomass. The paper investigates different thermochemical conversion methods, including fast, slow, catalytic, flash, and co-pyrolysis, while emphasizing their operational parameters, reactor designs, and effects on product yields. The influence of temperature, heating rate, and catalysts on enhancing the quality and quantity of bio-oil and biochar is thoroughly analyzed. More > Graphic Abstract

    Transforming Sawdust Waste into Renewable Energy Resources: A Comprehensive Review on Sustainable Bio-Oil and Biochar Production via Thermochemical Processes

  • Open Access

    REVIEW

    It’s in the blood: plasma as a source for biochemical identification and biological characterization of novel leukocyte chemoattractants

    Jo Van Damme1, Stijn Van Damme2, Soffe Struyf1, Ghislain Opdenakker3

    European Cytokine Network, Vol.36, No.1, pp. 6-14, 2025, DOI:10.1684/ecn.2025.0501

    Abstract Since their discovery, chemotactic cytokines or chemokines have been intensively studied for about half a century. Chemokines originate from tissue cells, leukocytes, blood platelets and plasma. Here, we review a number of seminal findings on plasma chemokines within an historical and international context. These aspects include how induction and purification protocols led to the discovery of a new family of mediators, named chemokines, on the basis of protein sequencing; how molecular cloning techniques facilitated discoveries of additional family members on the basis of conserved protein structures; how blood plasma and platelets were used as a More >

Displaying 1-10 on page 1 of 287. Per Page