Yu Zuo1, Wenwen Li2,*
CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4413-4431, 2024, DOI:10.32604/cmc.2024.049805
Abstract In cornfields, factors such as the similarity between corn seedlings and weeds and the blurring of plant edge details pose challenges to corn and weed segmentation. In addition, remote areas such as farmland are usually constrained by limited computational resources and limited collected data. Therefore, it becomes necessary to lighten the model to better adapt to complex cornfield scene, and make full use of the limited data information. In this paper, we propose an improved image segmentation algorithm based on unet. Firstly, the inverted residual structure is introduced into the contraction path to reduce the… More >