Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (501)
  • Open Access

    ARTICLE

    IoT-Assisted Cloud Data Sharing with Revocation and Equality Test under Identity-Based Proxy Re-Encryption

    Han-Yu Lin, Tung-Tso Tsai*, Yi-Chuan Wang

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.073234 - 12 January 2026

    Abstract Cloud services, favored by many enterprises due to their high flexibility and easy operation, are widely used for data storage and processing. However, the high latency, together with transmission overheads of the cloud architecture, makes it difficult to quickly respond to the demands of IoT applications and local computation. To make up for these deficiencies in the cloud, fog computing has emerged as a critical role in the IoT applications. It decentralizes the computing power to various lower nodes close to data sources, so as to achieve the goal of low latency and distributed processing.… More >

  • Open Access

    ARTICLE

    Advanced Video Processing and Data Transmission Technology for Unmanned Ground Vehicles in the Internet of Battlefield Things (loBT)

    Tai Liu1,2, Mao Ye2,*, Feng Wu3, Chao Zhu2, Bo Chen2, Guoyan Zhang1,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072692 - 12 January 2026

    Abstract With the continuous advancement of unmanned technology in various application domains, the development and deployment of blind-spot-free panoramic video systems have gained increasing importance. Such systems are particularly critical in battlefield environments, where advanced panoramic video processing and wireless communication technologies are essential to enable remote control and autonomous operation of unmanned ground vehicles (UGVs). However, conventional video surveillance systems suffer from several limitations, including limited field of view, high processing latency, low reliability, excessive resource consumption, and significant transmission delays. These shortcomings impede the widespread adoption of UGVs in battlefield settings. To overcome these… More >

  • Open Access

    ARTICLE

    BearFusionNet: A Multi-Stream Attention-Based Deep Learning Framework with Explainable AI for Accurate Detection of Bearing Casting Defects

    Md. Ehsanul Haque1, Md. Nurul Absur2, Fahmid Al Farid3, Md Kamrul Siam4, Jia Uddin5,*, Hezerul Abdul Karim3,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.071771 - 12 January 2026

    Abstract Manual inspection of onba earing casting defects is not realistic and unreliable, particularly in the case of some micro-level anomalies which lead to major defects on a large scale. To address these challenges, we propose BearFusionNet, an attention-based deep learning architecture with multi-stream, which merges both DenseNet201 and MobileNetV2 for feature extraction with a classification head inspired by VGG19. This hybrid design, figuratively beaming from one layer to another, extracts the enormity of representations on different scales, backed by a pre-preprocessing pipeline that brings defect saliency to the fore through contrast adjustment, denoising, and edge… More >

  • Open Access

    ARTICLE

    YOLOv10-HQGNN: A Hybrid Quantum Graph Learning Framework for Real-Time Faulty Insulator Detection

    Nghia Dinh1, Vinh Truong Hoang1,*, Viet-Tuan Le1, Kiet Tran-Trung1, Ha Duong Thi Hong1, Bay Nguyen Van1, Hau Nguyen Trung1, Thien Ho Huong1, Kittikhun Meethongjan2,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.069587 - 12 January 2026

    Abstract Ensuring the reliability of power transmission networks depends heavily on the early detection of faults in key components such as insulators, which serve both mechanical and electrical functions. Even a single defective insulator can lead to equipment breakdown, costly service interruptions, and increased maintenance demands. While unmanned aerial vehicles (UAVs) enable rapid and cost-effective collection of high-resolution imagery, accurate defect identification remains challenging due to cluttered backgrounds, variable lighting, and the diverse appearance of faults. To address these issues, we introduce a real-time inspection framework that integrates an enhanced YOLOv10 detector with a Hybrid Quantum-Enhanced More >

  • Open Access

    ARTICLE

    Research on Automated Game QA Reporting Based on Natural Language Captions

    Jun Myeong Kim, Jang Young Jeong, Shin Jin Kang, Beomjoo Seo*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-16, 2026, DOI:10.32604/cmc.2025.071084 - 09 December 2025

    Abstract Game Quality Assurance (QA) currently relies heavily on manual testing, a process that is both costly and time-consuming. Traditional script- and log-based automation tools are limited in their ability to detect unpredictable visual bugs, especially those that are context-dependent or graphical in nature. As a result, many issues go unnoticed during manual QA, which reduces overall game quality, degrades the user experience, and creates inefficiencies throughout the development cycle. This study proposes two approaches to address these challenges. The first leverages a Large Language Model (LLM) to directly analyze gameplay videos, detect visual bugs, and… More >

  • Open Access

    ARTICLE

    Smart Assessment of Flight Quality for Trajectory Planning in Internet of Flying Things

    Weiping Zeng1, Xiangping Bryce Zhai1,2,3,*, Cheng Sun1, Liusha Jiang1,2, Yicong Du3, Xuefeng Yan1,3

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-15, 2026, DOI:10.32604/cmc.2025.070777 - 09 December 2025

    Abstract With the expanding applications of unmanned aerial vehicles (UAVs), precise flight evaluation has emerged as a critical enabler for efficient path planning, directly impacting operational performance and safety. Traditional path planning algorithms typically combine Dubins curves with local optimization to minimize trajectory length under 3D spatial constraints. However, these methods often overlook the correlation between pilot control quality and UAV flight dynamics, limiting their adaptability in complex scenarios. In this paper, we propose an intelligent flight evaluation model specifically designed to enhance multi-waypoint trajectory optimization algorithms. Our model leverages a decision tree to integrate attitude More >

  • Open Access

    ARTICLE

    Deep Learning-Based Toolkit Inspection: Object Detection and Segmentation in Assembly Lines

    Arvind Mukundan1,2, Riya Karmakar1, Devansh Gupta3, Hsiang-Chen Wang1,4,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-23, 2026, DOI:10.32604/cmc.2025.069646 - 10 November 2025

    Abstract Modern manufacturing processes have become more reliant on automation because of the accelerated transition from Industry 3.0 to Industry 4.0. Manual inspection of products on assembly lines remains inefficient, prone to errors and lacks consistency, emphasizing the need for a reliable and automated inspection system. Leveraging both object detection and image segmentation approaches, this research proposes a vision-based solution for the detection of various kinds of tools in the toolkit using deep learning (DL) models. Two Intel RealSense D455f depth cameras were arranged in a top down configuration to capture both RGB and depth images… More >

  • Open Access

    ARTICLE

    Pills as Aids? Substance Use, School Satisfaction, Sleep Quality, Body Image, and Mental Well-Being Among Korean Adolescents

    Wufan Jia1, Seung Hee Yoo2, Hye Eun Lee3,*

    International Journal of Mental Health Promotion, Vol.27, No.12, pp. 1897-1906, 2025, DOI:10.32604/ijmhp.2025.071572 - 31 December 2025

    Abstract Background: With growing concerns about the abuse of prescription and over-the-counter (OTC) medications, such as medications for attention-deficit/hyperactivity disorder (ADHD), diet pills, and sleep aids, among adolescents in South Korea, this study aimed to investigated how these substances affect key aspects of adolescent well-being, specifically school satisfaction, body image, and sleep quality, and their association with mental health outcomes. Methods: A two-wave longitudinal survey was conducted with Korean female high school students (Wave 1: n = 494; Wave 2: n = 189). Linear regression analyses were used to evaluate the effects of ADHD medications, diet pills, and… More >

  • Open Access

    ARTICLE

    Drying Characteristics and Process Optimization of Banana Slices Using Hot Air-Infrared Combined Drying

    Guofeng Han, Chenxi Luo, Xin Liu, Yuanyuan Li, Yuling Cheng, Shuai Huang, Dan Huang*

    Frontiers in Heat and Mass Transfer, Vol.23, No.6, pp. 1981-1999, 2025, DOI:10.32604/fhmt.2025.074593 - 31 December 2025

    Abstract Bananas are highly perishable after harvest, and processing them into dried products is a crucial approach to reducing losses and adding their economic values. To address the inefficiency and prolonged duration of traditional hot air drying (HAD) and the quality inconsistency associated with single infrared drying (IRD), this study proposed a novel hot air-infrared combined drying (HAD-IRD) strategy. The effects of HAD, IRD, and HAD-IRD on the drying kinetics, color, rehydration capacity, moisture diffusion mechanism, and sensory quality of banana slices were systematically investigated. The parameters of the combined drying process were optimized using an L9(33)… More >

  • Open Access

    ARTICLE

    Drying Performance and Quality Variations of Corn Kernels at Different Drying Methods

    Yang Liu1, Biao Chen1, Xin Liu2, Chenxi Luo2, Shihui Xiao2,*

    Frontiers in Heat and Mass Transfer, Vol.23, No.6, pp. 2127-2146, 2025, DOI:10.32604/fhmt.2025.070973 - 31 December 2025

    Abstract This study evaluated corn kernel drying performance and quality changes using hot air drying (HAD) and infrared drying (ID) across temperatures ranging from 55°C to 80°C. Optimal drying parameters were determined by using the entropy weight method, with drying time, specific energy consumption, damage rate, fatty acids, starch, polyphenols, and flavonoids as indicators. Results demonstrated that ID significantly outperformed HAD, achieving drying times up to 20% shorter and reducing specific energy consumption and kernel damage by up to 79.3% and 66.7%, respectively, while also better preserving quality attributes. Both methods exhibited drying profiles characterized by More >

Displaying 1-10 on page 1 of 501. Per Page