Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (52)
  • Open Access

    ARTICLE

    Energy Efficient and Resource Allocation in Cloud Computing Using QT-DNN and Binary Bird Swarm Optimization

    Puneet Sharma1, Dhirendra Prasad Yadav1, Bhisham Sharma2,*, Surbhi B. Khan3,4,*, Ahlam Almusharraf 5

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 2179-2193, 2025, DOI:10.32604/cmc.2025.063190 - 29 August 2025

    Abstract The swift expansion of cloud computing has heightened the demand for energy-efficient and high-performance resource allocation solutions across extensive systems. This research presents an innovative hybrid framework that combines a Quantum Tensor-based Deep Neural Network (QT-DNN) with Binary Bird Swarm Optimization (BBSO) to enhance resource allocation while preserving Quality of Service (QoS). In contrast to conventional approaches, the QT-DNN accurately predicts task-resource mappings using tensor-based task representation, significantly minimizing computing overhead. The BBSO allocates resources dynamically, optimizing energy efficiency and task distribution. Experimental results from extensive simulations indicate the efficacy of the suggested strategy; the… More >

  • Open Access

    ARTICLE

    A Quality of Service Analysis of FPGA-Accelerated Conv2D Architectures for Brain Tumor Multi-Classification

    Ayoub Mhaouch1,*, Wafa Gtifa2, Turke Althobaiti3, Hamzah Faraj4, Mohsen Machhout1

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 5637-5663, 2025, DOI:10.32604/cmc.2025.065525 - 30 July 2025

    Abstract In medical imaging, accurate brain tumor classification in medical imaging requires real-time processing and efficient computation, making hardware acceleration essential. Field Programmable Gate Arrays (FPGAs) offer parallelism and reconfigurability, making them well-suited for such tasks. In this study, we propose a hardware-accelerated Convolutional Neural Network (CNN) for brain cancer classification, implemented on the PYNQ-Z2 FPGA. Our approach optimizes the first Conv2D layer using different numerical representations: 8-bit fixed-point (INT8), 16-bit fixed-point (FP16), and 32-bit fixed-point (FP32), while the remaining layers run on an ARM Cortex-A9 processor. Experimental results demonstrate that FPGA acceleration significantly outperforms the… More >

  • Open Access

    ARTICLE

    Electricity Theft and Its Impact on Quality of Service in Lubumbashi, DR Congo

    David Milambo Kasumba1,*, Guy Nkulu Wa Ngoie2, Hyacinthe Tungadio Diambomba1,3, Matthieu Kayembe Wa Kayembe4, Flory Kiseya Tshikala1, Bonaventure Banza Wa Banza1

    Energy Engineering, Vol.122, No.6, pp. 2401-2416, 2025, DOI:10.32604/ee.2025.063144 - 29 May 2025

    Abstract Electricity theft significantly impacts the reliability and sustainability of electricity services, particularly in developing regions. However, the socio-economic, infrastructural, and institutional drivers of theft remain inadequately explored. Here we examine electricity theft in Lubumbashi, Democratic Republic of Congo, focusing on its patterns, causes, and impacts on service quality. Theft rates exceeded 75% in peripheral municipalities like Katuba and Kampemba, driven by poverty, weak law enforcement, and poor infrastructure dominated by above-ground networks. In contrast, central areas like Kamalondo and Lubumbashi reported lower theft rates due to better urban planning and underground systems. We found that More >

  • Open Access

    ARTICLE

    Effective Controller Placement in Software-Defined Internet-of-Things Leveraging Deep Q-Learning (DQL)

    Jehad Ali1,*, Mohammed J. F. Alenazi2

    CMC-Computers, Materials & Continua, Vol.81, No.3, pp. 4015-4032, 2024, DOI:10.32604/cmc.2024.058480 - 19 December 2024

    Abstract The controller is a main component in the Software-Defined Networking (SDN) framework, which plays a significant role in enabling programmability and orchestration for 5G and next-generation networks. In SDN, frequent communication occurs between network switches and the controller, which manages and directs traffic flows. If the controller is not strategically placed within the network, this communication can experience increased delays, negatively affecting network performance. Specifically, an improperly placed controller can lead to higher end-to-end (E2E) delay, as switches must traverse more hops or encounter greater propagation delays when communicating with the controller. This paper introduces… More >

  • Open Access

    ARTICLE

    Optimization Model Proposal for Traffic Differentiation in Wireless Sensor Networks

    Adisa Hasković Džubur*, Samir Čaušević, Belma Memić, Muhamed Begović, Elma Avdagić-Golub, Alem Čolaković

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1059-1084, 2024, DOI:10.32604/cmc.2024.055386 - 15 October 2024

    Abstract Wireless sensor networks (WSNs) are characterized by heterogeneous traffic types (audio, video, data) and diverse application traffic requirements. This paper introduces three traffic classes following the defined model of heterogeneous traffic differentiation in WSNs. The requirements for each class regarding sensitivity to QoS (Quality of Service) parameters, such as loss, delay, and jitter, are described. These classes encompass real-time and delay-tolerant traffic. Given that QoS evaluation is a multi-criteria decision-making problem, we employed the AHP (Analytical Hierarchy Process) method for multi-criteria optimization. As a result of this approach, we derived weight values for different traffic… More >

  • Open Access

    ARTICLE

    Examining the Quality Metrics of a Communication Network with Distributed Software-Defined Networking Architecture

    Khawaja Tahir Mehmood1,2,*, Shahid Atiq1, Intisar Ali Sajjad3, Muhammad Majid Hussain4, Malik M. Abdul Basit2

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1673-1708, 2024, DOI:10.32604/cmes.2024.053903 - 27 September 2024

    Abstract Software-Defined Networking (SDN), with segregated data and control planes, provides faster data routing, stability, and enhanced quality metrics, such as throughput (Th), maximum available bandwidth (Bd(max)), data transfer (DTransfer), and reduction in end-to-end delay (D(E-E)). This paper explores the critical work of deploying SDN in large­scale Data Center Networks (DCNs) to enhance its Quality of Service (QoS) parameters, using logically distributed control configurations. There is a noticeable increase in Delay(E-E) when adopting SDN with a unified (single) control structure in big DCNs to handle Hypertext Transfer Protocol (HTTP) requests causing a reduction in network quality parameters (Bd(max), Th, DTransfer, D(E-E),… More > Graphic Abstract

    Examining the Quality Metrics of a Communication Network with Distributed Software-Defined Networking Architecture

  • Open Access

    ARTICLE

    New Antenna Array Beamforming Techniques Based on Hybrid Convolution/Genetic Algorithm for 5G and Beyond Communications

    Shimaa M. Amer1, Ashraf A. M. Khalaf2, Amr H. Hussein3,4, Salman A. Alqahtani5, Mostafa H. Dahshan6, Hossam M. Kassem3,4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2749-2767, 2024, DOI:10.32604/cmes.2023.029138 - 15 December 2023

    Abstract Side lobe level reduction (SLL) of antenna arrays significantly enhances the signal-to-interference ratio and improves the quality of service (QOS) in recent and future wireless communication systems starting from 5G up to 7G. Furthermore, it improves the array gain and directivity, increasing the detection range and angular resolution of radar systems. This study proposes two highly efficient SLL reduction techniques. These techniques are based on the hybridization between either the single convolution or the double convolution algorithms and the genetic algorithm (GA) to develop the Conv/GA and DConv/GA, respectively. The convolution process determines the element’s… More >

  • Open Access

    ARTICLE

    QoS-Aware Cloud Service Optimization Algorithm in Cloud Manufacturing Environment

    Wenlong Ma1,2,*, Youhong Xu1, Jianwei Zheng2, Sadaqat ur Rehman3

    Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 1499-1512, 2023, DOI:10.32604/iasc.2023.030484 - 21 June 2023

    Abstract In a cloud manufacturing environment with abundant functionally equivalent cloud services, users naturally desire the highest-quality service(s). Thus, a comprehensive measurement of quality of service (QoS) is needed. Optimizing the plethora of cloud services has thus become a top priority. Cloud service optimization is negatively affected by untrusted QoS data, which are inevitably provided by some users. To resolve these problems, this paper proposes a QoS-aware cloud service optimization model and establishes QoS-information awareness and quantification mechanisms. Untrusted data are assessed by an information correction method. The weights discovered by the variable precision Rough Set, More >

  • Open Access

    ARTICLE

    Survey of Resources Allocation Techniques with a Quality of Service (QoS) Aware in a Fog Computing Environment

    Wan Norsyafizan W. Muhamad1, Kaharudin Dimyati2, Muhammad Awais Javed3, Suzi Seroja Sarnin1,*, Divine Senanu Ametefe1

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 1291-1308, 2023, DOI:10.32604/cmc.2023.037214 - 08 June 2023

    Abstract The tremendous advancement in distributed computing and Internet of Things (IoT) applications has resulted in the adoption of fog computing as today’s widely used framework complementing cloud computing. Thus, suitable and effective applications could be performed to satisfy the applications’ latency requirement. Resource allocation techniques are essential aspects of fog networks which prevent unbalanced load distribution. Effective resource management techniques can improve the quality of service metrics. Due to the limited and heterogeneous resources available within the fog infrastructure, the fog layer’s resources need to be optimised to efficiently manage and distribute them to different… More >

  • Open Access

    ARTICLE

    Hybrid Chameleon and Honey Badger Optimization Algorithm for QoS-Based Cloud Service Composition Problem

    G. Manimala*, A. Chinnasamy

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 393-412, 2023, DOI:10.32604/csse.2023.037066 - 26 May 2023

    Abstract Cloud computing facilitates the great potentiality of storing and managing remote access to services in terms of software as a service (SaaS). Several organizations have moved towards outsourcing over the cloud to reduce the burden on local resources. In this context, the metaheuristic optimization method is determined to be highly suitable for selecting appropriate services that comply with the requirements of the client’s requests, as the services stored over the cloud are too complex and scalable. To achieve better service composition, the parameters of Quality of Service (QoS) related to each service considered to be… More >

Displaying 1-10 on page 1 of 52. Per Page