Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Real-Time Implementation of Quadrotor UAV Control System Based on a Deep Reinforcement Learning Approach

    Taha Yacine Trad1,*, Kheireddine Choutri1, Mohand Lagha1, Souham Meshoul2, Fouad Khenfri3, Raouf Fareh4, Hadil Shaiba5

    CMC-Computers, Materials & Continua, Vol.81, No.3, pp. 4757-4786, 2024, DOI:10.32604/cmc.2024.055634 - 19 December 2024

    Abstract The popularity of quadrotor Unmanned Aerial Vehicles (UAVs) stems from their simple propulsion systems and structural design. However, their complex and nonlinear dynamic behavior presents a significant challenge for control, necessitating sophisticated algorithms to ensure stability and accuracy in flight. Various strategies have been explored by researchers and control engineers, with learning-based methods like reinforcement learning, deep learning, and neural networks showing promise in enhancing the robustness and adaptability of quadrotor control systems. This paper investigates a Reinforcement Learning (RL) approach for both high and low-level quadrotor control systems, focusing on attitude stabilization and position… More >

  • Open Access

    ARTICLE

    A Deep Learning Approach for the Mobile-Robot Motion Control System

    Rihem Farkh1,4,*, Khaled Al jaloud1, Saad Alhuwaimel2, Mohammad Tabrez Quasim3, Moufida Ksouri4

    Intelligent Automation & Soft Computing, Vol.29, No.2, pp. 423-435, 2021, DOI:10.32604/iasc.2021.016219 - 16 June 2021

    Abstract A line follower robot is an autonomous intelligent system that can detect and follow a line drawn on floor. Line follower robots need to adapt accurately, quickly, efficiently, and inexpensively to changing operating conditions. This study proposes a deep learning controller for line follower mobile robots using complex decision-making strategies. An Arduino embedded platform is used to implement the controller. A multilayered feedforward network with a backpropagation training algorithm is employed. The network is trained offline using Keras and implemented on a ATmega32 microcontroller. The experimental results show that it has a good control effect More >

  • Open Access

    ARTICLE

    Intelligent Autonomous-Robot Control for Medical Applications

    Rihem Farkh1,2, Haykel Marouani1,*, Khaled Al Jaloud1, Saad Alhuwaimel3, Mohammad Tabrez Quasim4, Yasser Fouad1

    CMC-Computers, Materials & Continua, Vol.68, No.2, pp. 2189-2203, 2021, DOI:10.32604/cmc.2021.015906 - 13 April 2021

    Abstract The COVID-19 pandemic has shown that there is a lack of healthcare facilities to cope with a pandemic. This has also underscored the immediate need to rapidly develop hospitals capable of dealing with infectious patients and to rapidly change in supply lines to manufacture the prescription goods (including medicines) that is needed to prevent infection and treatment for infected patients. The COVID-19 has shown the utility of intelligent autonomous robots that assist human efforts to combat a pandemic. The artificial intelligence based on neural networks and deep learning can help to fight COVID-19 in many… More >

Displaying 1-10 on page 1 of 3. Per Page