Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (106)
  • Open Access

    PROCEEDINGS

    Additively Manufactured Dual-Faced Structured Fabric for Shape-Adaptive Protection

    Yuanyuan Tian1,2, Kun Zhou1,2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.013372

    Abstract Fabric-based materials have demonstrated promise for high-performance wearable applications but are currently restricted by their deficient mechanical properties. Here, we leverage the design freedom offered by additive manufacturing and a novel interlocking pattern to for the first time fabricate a dual-faced chain mail structure consisting of three-dimensional re-entrant unit cells. The flexible structured fabric demonstrates high specific energy absorption and specific strength of up to 1530 J/kg and 5900 N·m/kg, respectively, together with an excellent recovery ratio of ~80%, thereby overcoming the strength–recoverability trade-off. The designed dual-faced structured fabric compares favorably against a wide range More >

  • Open Access

    ARTICLE

    The Impact of Nursing Staff’s Work Attitude on the Fear of Patients Recovering from Benign Tumors: Family Support as a Mediating Variable

    Chengzhe Guo1, Aihua Cheng2,*, Jian Chen2, Gaojie Cheng3

    Psycho-Oncologie, Vol.18, No.4, pp. 291-303, 2024, DOI:10.32604/po.2024.054446 - 04 December 2024

    Abstract The perception of nursing staff’s attitude influences patient fear. Understanding this dynamic is crucial for fostering a supportive environment conducive to patient well-being and effective healthcare practices. The purpose of this research is to investigate how the attitudes and behaviours of nursing staff influence the fear and anxiety levels of patients recovering from benign tumors, aiming to improve patient care and recovery outcomes. Data was collected from a sample of 100 participants, comprising 20 nursing staff and 80 patients recovering from benign tumors. Surveys were administered to gather quantitative data on attitudes and fear levels.… More >

  • Open Access

    ARTICLE

    Bioactive Compounds Recovery from Larrea tridentata by Green Ultrasound-Assisted Extraction

    Muyideen Olaitan Bamidele1, José Sandoval-Cortés1, María Liliana Flores-López2, Olga Berenice Álvarez Pérez1, Monica Lizeth Chavez González1, Cristóbal Noe Aguilar1,*

    Phyton-International Journal of Experimental Botany, Vol.93, No.11, pp. 3091-3107, 2024, DOI:10.32604/phyton.2024.058422 - 30 November 2024

    Abstract Postharvest losses remain a significant challenge, particularly in developing countries that have inadequate infrastructure. Medicinal plants offer an eco-friendly and sustainable solution for managing diseases and pests in agricultural systems. These plants are rich in bioactive compounds, such as alkaloids, flavonoids, terpenoids, phenolics, and essential oils, many of which have proven antimicrobial, antifungal, insecticidal, and antioxidant properties. These characteristics make medicinal plants viable candidates for postharvest disease and pest control. Among these, Larrea tridentata (creosote bush) is particularly notable for its bioactive compounds with strong antifungal properties. Their potential applications include agriculture, food preservation, and medicine.… More > Graphic Abstract

    Bioactive Compounds Recovery from <i>Larrea tridentata</i> by Green Ultrasound-Assisted Extraction

  • Open Access

    ARTICLE

    Thermodynamic, Economic, and Environmental Analyses and Multi-Objective Optimization of Dual-Pressure Organic Rankine Cycle System with Dual-Stage Ejector

    Guowei Li1,*, Shujuan Bu2, Xinle Yang2, Kaijie Liang1, Zhengri Shao1, Xiaobei Song1, Yitian Tang3, Dejing Zong4

    Energy Engineering, Vol.121, No.12, pp. 3843-3874, 2024, DOI:10.32604/ee.2024.056195 - 22 November 2024

    Abstract A novel dual-pressure organic Rankine cycle system (DPORC) with a dual-stage ejector (DE-DPORC) is proposed. The system incorporates a dual-stage ejector that utilizes a small amount of extraction steam from the high-pressure expander to pressurize a large quantity of exhaust gas to perform work for the low-pressure expander. This innovative approach addresses condensing pressure limitations, reduces power consumption during pressurization, minimizes heat loss, and enhances the utilization efficiency of waste heat steam. A thermodynamic model is developed with net output work, thermal efficiency, and exergy efficiency (Wnet, ηt, ηex) as evaluation criteria, an economic model is established… More >

  • Open Access

    REVIEW

    Right Axillary Thoracotomy Should Be the Standard of Care for Repair of Non-Complex Congenital Heart Defects in Infants and Children

    Sameh M. Said1,2,*, Yasin Essa1

    Congenital Heart Disease, Vol.19, No.4, pp. 407-417, 2024, DOI:10.32604/chd.2024.055636 - 31 October 2024

    Abstract Minimally invasive approaches for cardiac surgery in children have been lagging in comparison to the adult world. A wide range of the most common congenital heart defects in infants and children can be repaired successfully through a variety of non-sternotomy incisions. This has been shown to be associated with superior cosmetic results, shorter hospital stays, and rapid return to full activity compared to sternotomy. These approaches have been around for decades, but they have not been widely adopted for a variety of reasons. Right axillary thoracotomy is one of these approaches that we believe should More >

  • Open Access

    ARTICLE

    Recovery of Solid Oxide Fuel Cell Waste Heat by Thermoelectric Generators and Alkali Metal Thermoelectric Converters

    Wenxia Zhu*, Baishu Chen, Lexin Wang, Chunxiang Wang

    Frontiers in Heat and Mass Transfer, Vol.22, No.5, pp. 1559-1573, 2024, DOI:10.32604/fhmt.2024.047351 - 30 October 2024

    Abstract A Solid Oxide Fuel Cell (SOFC) is an electrochemical device that converts the chemical energy of a substance into electrical energy through an oxidation-reduction mechanism. The electrochemical reaction of a solid oxide fuel cell (SOFC) generates heat, and this heat can be recovered and put to use in a waste heat recovery system. In addition to preheating the fuel and oxidant, producing steam for industrial use, and heating and cooling enclosed rooms, this waste heat can be used for many more productive uses. The large waste heat produced by SOFCs is a worry that must… More >

  • Open Access

    ARTICLE

    TGAIN: Geospatial Data Recovery Algorithm Based on GAIN-LSTM

    Lechan Yang1,*, Li Li2, Shouming Ma3

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1471-1489, 2024, DOI:10.32604/cmc.2024.056379 - 15 October 2024

    Abstract Accurate geospatial data are essential for geographic information systems (GIS), environmental monitoring, and urban planning. The deep integration of the open Internet and geographic information technology has led to increasing challenges in the integrity and security of spatial data. In this paper, we consider abnormal spatial data as missing data and focus on abnormal spatial data recovery. Existing geospatial data recovery methods require complete datasets for training, resulting in time-consuming data recovery and lack of generalization. To address these issues, we propose a GAIN-LSTM-based geospatial data recovery method (TGAIN), which consists of two main works:… More >

  • Open Access

    ARTICLE

    A Mathematical Modeling of 3D Cubical Geometry Hypothetical Reservoir under the Effect of Nanoparticles Flow Rate, Porosity, and Relative Permeability

    Mudasar Zafar1,2,3,*, Hamzah Sakidin1, Abida Hussain1, Loshini Thiruchelvam4, Mikhail Sheremet5, Iskandar Dzulkarnain3, Roslinda Nazar6, Abdullah Al-Yaari1, Rizwan Safdar7,8

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1193-1211, 2024, DOI:10.32604/cmes.2024.049259 - 27 September 2024

    Abstract This study aims to formulate a steady-state mathematical model for a three-dimensional permeable enclosure (cavity) to determine the oil extraction rate using three distinct nanoparticles, SiO2, Al2O3, and Fe2O3, in unconventional oil reservoirs. The simulation is conducted for different parameters of volume fractions, porosities, and mass flow rates to determine the optimal oil recovery. The impact of nanoparticles on relative permeability ( and water is also investigated. The simulation process utilizes the finite volume ANSYS Fluent. The study results showed that when the mass flow rate at the inlet is low, oil recovery goes up. In addition, More >

  • Open Access

    ARTICLE

    Enhanced Mechanism for Link Failure Rerouting in Software-Defined Exchange Point Networks

    Abdijalil Abdullahi1,2, Selvakumar Manickam2,*

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4361-4385, 2024, DOI:10.32604/cmc.2024.054215 - 12 September 2024

    Abstract Internet Exchange Point (IXP) is a system that increases network bandwidth performance. Internet exchange points facilitate interconnection among network providers, including Internet Service Providers (ISPs) and Content Delivery Providers (CDNs). To improve service management, Internet exchange point providers have adopted the Software Defined Network (SDN) paradigm. This implementation is known as a Software-Defined Exchange Point (SDX). It improves network providers’ operations and management. However, performance issues still exist, particularly with multi-hop topologies. These issues include switch memory costs, packet processing latency, and link failure recovery delays. The paper proposes Enhanced Link Failure Rerouting (ELFR), an… More >

  • Open Access

    ARTICLE

    Assessment of Low Global Warming Potential Refrigerants for Waste Heat Recovery in Data Center with On-Chip Two-Phase Cooling Loop

    Yuming Zhao1, Jing Wang1, Bin Sun2, Zhenshang Wang1, Huashan Li2, Jiongcong Chen2,*

    Frontiers in Heat and Mass Transfer, Vol.22, No.4, pp. 1171-1188, 2024, DOI:10.32604/fhmt.2024.054594 - 30 August 2024

    Abstract Data centers (DCs) are highly energy-intensive facilities, where about 30%–50% of the power consumed is attributable to the cooling of information technology equipment. This makes liquid cooling, especially in two-phase mode, as an alternative to air cooling for the microprocessors in servers of interest. The need to meet the increased power density of server racks in high-performance DCs, along with the push towards lower global warming potential (GWP) refrigerants due to environmental concerns, has motivated research on the selection of two-phase heat transfer fluids for cooling servers while simultaneously recovering waste heat. With this regard,… More >

Displaying 11-20 on page 2 of 106. Per Page