Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (151)
  • Open Access

    ARTICLE

    Confidence Intervals for the Reliability of Dependent Systems: Integrating Frailty Models and Copula-Based Methods

    Osnamir E. Bru-Cordero1, Cecilia Castro2, Víctor Leiva3,*, Mario C. Jaramillo-Elorza4

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.2, pp. 1401-1431, 2025, DOI:10.32604/cmes.2025.064487 - 30 May 2025

    Abstract Most reliability studies assume large samples or independence among components, but these assumptions often fail in practice, leading to imprecise inference. We address this issue by constructing confidence intervals (CIs) for the reliability of two-component systems with Weibull distributed failure times under a copula-frailty framework. Our construction integrates gamma-distributed frailties to capture unobserved heterogeneity and a copula-based dependence structure for correlated failures. The main contribution of this work is to derive adjusted CIs that explicitly incorporate the copula parameter in the variance-covariance matrix, achieving near-nominal coverage probabilities even in small samples or highly dependent settings. More >

  • Open Access

    ARTICLE

    Advanced Nodal Pricing Strategies for Modern Power Distribution Networks: Enhancing Market Efficiency and System Reliability

    Ganesh Wakte1,*, Mukesh Kumar2, Mohammad Aljaidi3, Ramesh Kumar4, Manish Kumar Singla4

    Energy Engineering, Vol.122, No.6, pp. 2519-2537, 2025, DOI:10.32604/ee.2025.060658 - 29 May 2025

    Abstract Nodal pricing is a critical mechanism in electricity markets, utilized to determine the cost of power transmission to various nodes within a distribution network. As power systems evolve to incorporate higher levels of renewable energy and face increasing demand fluctuations, traditional nodal pricing models often fall short to meet these new challenges. This research introduces a novel enhanced nodal pricing mechanism for distribution networks, integrating advanced optimization techniques and hybrid models to overcome these limitations. The primary objective is to develop a model that not only improves pricing accuracy but also enhances operational efficiency and… More > Graphic Abstract

    Advanced Nodal Pricing Strategies for Modern Power Distribution Networks: Enhancing Market Efficiency and System Reliability

  • Open Access

    ARTICLE

    Research on Quantification Mechanism of Data Source Reliability Based on Trust Evaluation

    Gaoshang Lu#, Fa Fu#,*, Zixiang Tang

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 4239-4256, 2025, DOI:10.32604/cmc.2025.062556 - 19 May 2025

    Abstract In the data transaction process within a data asset trading platform, quantifying the trustworthiness of data source nodes is challenging due to their numerous attributes and complex structures. To address this issue, a distributed data source trust assessment management framework, a trust quantification model, and a dynamic adjustment mechanism are proposed. The model integrates the Analytic Hierarchy Process (AHP) and Dempster-Shafer (D-S) evidence theory to determine attribute weights and calculate direct trust values, while the PageRank algorithm is employed to derive indirect trust values. The direct and indirect trust values are then combined to compute More >

  • Open Access

    ARTICLE

    Multi-Neighborhood Enhanced Harris Hawks Optimization for Efficient Allocation of Hybrid Renewable Energy System with Cost and Emission Reduction

    Elaine Yi-Ling Wu*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 1185-1214, 2025, DOI:10.32604/cmes.2025.064636 - 11 April 2025

    Abstract Hybrid renewable energy systems (HRES) offer cost-effectiveness, low-emission power solutions, and reduced dependence on fossil fuels. However, the renewable energy allocation problem remains challenging due to complex system interactions and multiple operational constraints. This study develops a novel Multi-Neighborhood Enhanced Harris Hawks Optimization (MNEHHO) algorithm to address the allocation of HRES components. The proposed approach integrates key technical parameters, including charge-discharge efficiency, storage device configurations, and renewable energy fraction. We formulate a comprehensive mathematical model that simultaneously minimizes levelized energy costs and pollutant emissions while maintaining system reliability. The MNEHHO algorithm employs multiple neighborhood structures… More >

  • Open Access

    ARTICLE

    SL-COA: Hybrid Efficient and Enhanced Coati Optimization Algorithm for Structural Reliability Analysis

    Yunhan Ling1, Huajun Peng2, Yiqing Shi1,*, Chao Xu1, Jingzhen Yan1, Jingjing Wang1, Hui Ma3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 767-808, 2025, DOI:10.32604/cmes.2025.061763 - 11 April 2025

    Abstract The traditional first-order reliability method (FORM) often encounters challenges with non-convergence of results or excessive calculation when analyzing complex engineering problems. To improve the global convergence speed of structural reliability analysis, an improved coati optimization algorithm (COA) is proposed in this paper. In this study, the social learning strategy is used to improve the coati optimization algorithm (SL-COA), which improves the convergence speed and robustness of the new heuristic optimization algorithm. Then, the SL-COA is compared with the latest heuristic optimization algorithms such as the original COA, whale optimization algorithm (WOA), and osprey optimization algorithm… More >

  • Open Access

    ARTICLE

    Multi-Objective Approaches for Optimizing 37-Bus Power Distribution Systems with Reconfiguration Technique: From Unbalance Current & Voltage Factor to Reliability Indices

    Murat Cikan*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 673-721, 2025, DOI:10.32604/cmes.2025.061699 - 11 April 2025

    Abstract This study examines various issues arising in three-phase unbalanced power distribution networks (PDNs) using a comprehensive optimization approach. With the integration of renewable energy sources, increasing energy demands, and the adoption of smart grid technologies, power systems are undergoing a rapid transformation, making the need for efficient, reliable, and sustainable distribution networks increasingly critical. In this paper, the reconfiguration problem in a 37-bus unbalanced PDN test system is solved using five different popular metaheuristic algorithms. Among these advanced search algorithms, the Bonobo Optimizer (BO) has demonstrated superior performance in handling the complexities of unbalanced power… More >

  • Open Access

    Retraction: Comparison of Structural Probabilistic and Non-Probabilistic Reliability Computational Methods under Big Data Condition

    Yongfeng Fang1,3, Kong Fah Tee2,*

    Structural Durability & Health Monitoring, Vol.19, No.3, pp. 771-771, 2025, DOI:10.32604/sdhm.2024.061036 - 03 April 2025

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    Safety Evaluation of Bridge under Moving Abnormal Indivisible Load Based on Fusing Bridge Inspection Data and Load Test Data

    He Zhang1,2,*, He-Qing Mu2,*, Xiao Zhang3, He Zhang2, Yuedong Yang4

    Structural Durability & Health Monitoring, Vol.19, No.3, pp. 499-530, 2025, DOI:10.32604/sdhm.2025.059070 - 03 April 2025

    Abstract Safety evaluation of a bridge under Moving Abnormal Indivisible Loads (MAILs) directly relates to whether an oversized and/or overweight Large-Cargo Transportation (LCT) vehicle is permitted to pass the bridge. Safety evaluation can be updated by fusing bridge inspection data and load test data, but there are two fundamental difficulties in updating. The first difficulty is to develop an updating scheme to utilize the unstructured inspection data. The second difficulty is to develop a successive updating scheme using load test data based on the previous updating results of the inspection data. This paper proposed a framework,… More >

  • Open Access

    ARTICLE

    A Novel Reliable and Trust Objective Function for RPL-Based IoT Routing Protocol

    Mariam A. Alotaibi1,2,*, Sami S. Alwakeel1,*, Aasem N. Alyahya1

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 3467-3497, 2025, DOI:10.32604/cmc.2025.060599 - 17 February 2025

    Abstract The Internet of Things (IoT) integrates diverse devices into the Internet infrastructure, including sensors, meters, and wearable devices. Designing efficient IoT networks with these heterogeneous devices requires the selection of appropriate routing protocols, which is crucial for maintaining high Quality of Service (QoS). The Internet Engineering Task Force’s Routing Over Low Power and Lossy Networks (IETF ROLL) working group developed the IPv6 Routing Protocol for Low Power and Lossy Networks (RPL) to meet these needs. While the initial RPL standard focused on single-metric route selection, ongoing research explores enhancing RPL by incorporating multiple routing metrics… More >

  • Open Access

    ARTICLE

    Towards Net Zero Resilience: A Futuristic Architectural Strategy for Cyber-Attack Defence in Industrial Control Systems (ICS) and Operational Technology (OT)

    Hariharan Ramachandran1,*, Richard Smith2, Kenny Awuson David1,*, Tawfik Al-Hadhrami3, Parag Acharya1

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 3619-3641, 2025, DOI:10.32604/cmc.2024.054802 - 17 February 2025

    Abstract This paper introduces the Integrated Security Embedded Resilience Architecture (ISERA) as an advanced resilience mechanism for Industrial Control Systems (ICS) and Operational Technology (OT) environments. The ISERA framework integrates security by design principles, micro-segmentation, and Island Mode Operation (IMO) to enhance cyber resilience and ensure continuous, secure operations. The methodology deploys a Forward-Thinking Architecture Strategy (FTAS) algorithm, which utilises an industrial Intrusion Detection System (IDS) implemented with Python’s Network Intrusion Detection System (NIDS) library. The FTAS algorithm successfully identified and responded to cyber-attacks, ensuring minimal system disruption. ISERA has been validated through comprehensive testing scenarios… More >

Displaying 1-10 on page 1 of 151. Per Page