Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (167)
  • Open Access

    ARTICLE

    Calibrating Trust in Generative Artificial Intelligence: A Human-Centered Testing Framework with Adaptive Explainability

    Sewwandi Tennakoon1, Eric Danso1, Zhenjie Zhao2,*

    Journal on Artificial Intelligence, Vol.7, pp. 517-547, 2025, DOI:10.32604/jai.2025.072628 - 01 December 2025

    Abstract Generative Artificial Intelligence (GenAI) systems have achieved remarkable capabilities across text, code, and image generation; however, their outputs remain prone to errors, hallucinations, and biases. Users often overtrust these outputs due to limited transparency, which can lead to misuse and decision errors. This study addresses the challenge of calibrating trust in GenAI through a human centered testing framework enhanced with adaptive explainability. We introduce a methodology that adjusts explanations dynamically according to user expertise, model output confidence, and contextual risk factors, providing guidance that is informative but not overwhelming. The framework was evaluated using outputs… More >

  • Open Access

    ARTICLE

    Probabilistic Graphical Model-Based Operational Reliability-Centric Design of Offshore Wind Farm Feeder Layouts

    Qiuyu Lu1, Yunqi Yan2, Yang Liu1, Ying Chen2,*, Yinguo Yang1, Tannan Xiao3, Guobing Wu1

    Energy Engineering, Vol.122, No.12, pp. 4799-4814, 2025, DOI:10.32604/ee.2025.069131 - 27 November 2025

    Abstract The rapid expansion of offshore wind energy necessitates robust and cost-effective electrical collector system (ECS) designs that prioritize lifetime operational reliability. Traditional optimization approaches often simplify reliability considerations or fail to holistically integrate them with economic and technical constraints. This paper introduces a novel, two-stage optimization framework for offshore wind farm (OWF) ECS planning that systematically incorporates reliability. The first stage employs Mixed-Integer Linear Programming (MILP) to determine an optimal radial network topology, considering linearized reliability approximations and geographical constraints. The second stage enhances this design by strategically placing tie-lines using a Mixed-Integer Quadratically Constrained More >

  • Open Access

    ARTICLE

    Real-Time and Energy-Aware UAV Routing: A Scalable DAR Approach for Future 6G Systems

    Khadija Slimani1,2,*, Samira Khoulji2, Hamed Taherdoost3,4, Mohamed Larbi Kerkeb5

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 4667-4686, 2025, DOI:10.32604/cmc.2025.070173 - 23 October 2025

    Abstract The integration of the dynamic adaptive routing (DAR) algorithm in unmanned aerial vehicle (UAV) networks offers a significant advancement in addressing the challenges posed by next-generation communication systems like 6G. DAR’s innovative framework incorporates real-time path adjustments, energy-aware routing, and predictive models, optimizing reliability, latency, and energy efficiency in UAV operations. This study demonstrated DAR’s superior performance in dynamic, large-scale environments, proving its adaptability and scalability for real-time applications. As 6G networks evolve, challenges such as bandwidth demands, global spectrum management, security vulnerabilities, and financial feasibility become prominent. DAR aligns with these demands by offering More >

  • Open Access

    PROCEEDINGS

    Reliability-Based Motion Stability Analysis of Industrial Robots for Future Factories

    Shuoshuo Shen1,2, Jin Cheng1,2,*, Zhenyu Liu2, Jianrong Tan1,2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.2, pp. 1-2, 2025, DOI:10.32604/icces.2025.011752

    Abstract Motion stability assessment of industrial robots subject to complex dynamic properties and multi-source uncertainties in open environments registers an important yet challenging task [1–5]. To tackle this task, this study proposes a new reliability-based motion stability analysis method for industrial robots, which incorporates the moment-based method and Bayesian inference-guided probabilistic model updating strategy. To start with, the comprehensive motion system model of industrial robots is established by integrating the control, drive, and multi-body motion models. The reliability-based stability model of industrial robots is presented considering the uncertainty of parameters. Subsequently, the fractional exponential moments are… More >

  • Open Access

    ARTICLE

    The Chinese Hogg Climate Anxiety Scale (HCAS): Revision and validation integrating classical test theory and network analysis approaches

    Xi Chen1,3, Wanru Lin1, Yuefu Liu2,*

    Journal of Psychology in Africa, Vol.35, No.5, pp. 661-669, 2025, DOI:10.32604/jpa.2025.068787 - 24 October 2025

    Abstract Accurate assessment of climate anxiety is crucial, yet the cross-cultural transportability of existing instruments remains an open question. This study translated and validated the Hogg Climate Anxiety Scale for the Chinese context. A total of 959 students (females = 69.7%; M age = 19.60 years, SD = 1.40 years) completed the Hogg Climate Anxiety Scale, with the Climate Change Anxiety Scale and the Anxiety Presence Subscale served as criterion measures for concurrent validity. Test–retest reliability was evaluated with a subset after one month. Confirmatory factor analysis supported the original four-factor structure and measurement invariance across genders.… More >

  • Open Access

    ARTICLE

    Testing the internal factor reliability of an Organisational Citizenship Behaviour (OCB) measure for a South African higher education setting

    Mariette Coetzee*, Linda Naidoo

    Journal of Psychology in Africa, Vol.35, No.5, pp. 627-634, 2025, DOI:10.32604/jpa.2025.065791 - 24 October 2025

    Abstract This study developed and tested the internal reliability of a 27-item Organisational Citizenship Behaviour (OCB) scale for higher education institutions. Participants were a probability sample of 452 (N = 452) university staff of a South African open-distance higher education institution (academics 46%, administrative staff 33%, professional and managerial staff 21%). The participants completed the Organisational Citizenship Behaviour questionnaire. Exploratory factor analysis identified a four-construct measurement model for organisational citizenship behaviour: altruism, civic virtue, sportsmanship, and sense of duty and consideration. The sense of duty and consideration is the only factor not previously identified as a factor More >

  • Open Access

    ARTICLE

    Type-I Heavy-Tailed Burr XII Distribution with Applications to Quality Control, Skewed Reliability Engineering Systems and Lifetime Data

    Okechukwu J. Obulezi1,*, Hatem E. Semary2, Sadia Nadir3, Chinyere P. Igbokwe4, Gabriel O. Orji1, A. S. Al-Moisheer2, Mohammed Elgarhy5

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.3, pp. 2991-3027, 2025, DOI:10.32604/cmes.2025.069553 - 30 September 2025

    Abstract This study introduces the type-I heavy-tailed Burr XII (TIHTBXII) distribution, a highly flexible and robust statistical model designed to address the limitations of conventional distributions in analyzing data characterized by skewness, heavy tails, and diverse hazard behaviors. We meticulously develop the TIHTBXII’s mathematical foundations, including its probability density function (PDF), cumulative distribution function (CDF), and essential statistical properties, crucial for theoretical understanding and practical application. A comprehensive Monte Carlo simulation evaluates four parameter estimation methods: maximum likelihood (MLE), maximum product spacing (MPS), least squares (LS), and weighted least squares (WLS). The simulation results consistently show… More >

  • Open Access

    ARTICLE

    A Flexible Exponential Log-Logistic Distribution for Modeling Complex Failure Behaviors in Reliability and Engineering Data

    Hadeel AlQadi1, Fatimah M. Alghamdi2, Hamada H. Hassan3, Mohamed E. Mead4, Ahmed Z. Afify5,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.2, pp. 2029-2061, 2025, DOI:10.32604/cmes.2025.069801 - 31 August 2025

    Abstract Parametric survival models are essential for analyzing time-to-event data in fields such as engineering and biomedicine. While the log-logistic distribution is popular for its simplicity and closed-form expressions, it often lacks the flexibility needed to capture complex hazard patterns. In this article, we propose a novel extension of the classical log-logistic distribution, termed the new exponential log-logistic (NExLL) distribution, designed to provide enhanced flexibility in modeling time-to-event data with complex failure behaviors. The NExLL model incorporates a new exponential generator to expand the shape adaptability of the baseline log-logistic distribution, allowing it to capture a… More >

  • Open Access

    ARTICLE

    Reliability Topology Optimization Based on Kriging-Assisted Level Set Function and Novel Dynamic Hybrid Particle Swarm Optimization Algorithm

    Hang Zhou*, Xiaojun Ding, Song Chen, Qijun Zhang

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.2, pp. 1907-1933, 2025, DOI:10.32604/cmes.2025.069198 - 31 August 2025

    Abstract Structural Reliability-Based Topology Optimization (RBTO), as an efficient design methodology, serves as a crucial means to ensure the development of modern engineering structures towards high performance, long service life, and high reliability. However, in practical design processes, topology optimization must not only account for the static performance of structures but also consider the impacts of various responses and uncertainties under complex dynamic conditions, which traditional methods often struggle accommodate. Therefore, this study proposes an RBTO framework based on a Kriging-assisted level set function and a novel Dynamic Hybrid Particle Swarm Optimization (DHPSO) algorithm. By leveraging… More >

  • Open Access

    ARTICLE

    Calibration and Reliability Analysis of Eccentric Compressive Concrete Column with High Strength Rebars

    Baojun Qin1,2, Hong Jiang1,2,3, Wei Zhang4, Xiang Liu4,*

    Structural Durability & Health Monitoring, Vol.19, No.5, pp. 1203-1220, 2025, DOI:10.32604/sdhm.2025.063813 - 05 September 2025

    Abstract The utilization of high-strength steel bars (HSSB) within concrete structures demonstrates significant advantages in material conservation and mechanical performance enhancement. Nevertheless, existing design codes exhibit limitations in addressing the distinct statistical characteristics of HSSB, particularly regarding strength design parameters. For instance, GB50010-2010 fails to specify design strength values for reinforcement exceeding 600 MPa, creating technical barriers for advancing HSSB implementation. This study systematically investigates the reliability of eccentric compression concrete columns reinforced with 600 MPa-grade HSSB through high-order moment method analysis. Material partial factors were calibrated against target reliability indices prescribed by GB50068-2018, incorporating critical More >

Displaying 1-10 on page 1 of 167. Per Page