Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (96)
  • Open Access

    ARTICLE

    Priority-Aware Resource Allocation for VNF Deployment in Service Function Chains Based on Graph Reinforcement Learning

    Seyha Ros1,#, Seungwoo Kang1,#, Taikuong Iv1, Inseok Song1, Prohim Tam2, Seokhoon Kim1,3,*

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 1649-1665, 2025, DOI:10.32604/cmc.2025.062716 - 16 April 2025

    Abstract Recently, Network Functions Virtualization (NFV) has become a critical resource for optimizing capability utilization in the 5G/B5G era. NFV decomposes the network resource paradigm, demonstrating the efficient utilization of Network Functions (NFs) to enable configurable service priorities and resource demands. Telecommunications Service Providers (TSPs) face challenges in network utilization, as the vast amounts of data generated by the Internet of Things (IoT) overwhelm existing infrastructures. IoT applications, which generate massive volumes of diverse data and require real-time communication, contribute to bottlenecks and congestion. In this context, Multi-access Edge Computing (MEC) is employed to support resource… More >

  • Open Access

    ARTICLE

    Two-Hop Delay-Aware Energy Efficiency Resource Allocation in Space-Air-Ground Integrated Smart Grid Network

    Qinghai Ou1, Min Yang1, Jingcai Kong1, Yang Yang2,*

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 2429-2447, 2025, DOI:10.32604/cmc.2025.062067 - 16 April 2025

    Abstract The lack of communication infrastructure in remote regions presents significant obstacles to gathering data from smart power sensors (SPSs) in smart grid networks. In such cases, a space-air-ground integrated network serves as an effective emergency solution. This study addresses the challenge of optimizing the energy efficiency of data transmission from SPSs to low Earth orbit (LEO) satellites through unmanned aerial vehicles (UAVs), considering both effective capacity and fronthaul link capacity constraints. Due to the non-convex nature of the problem, the objective function is reformulated, and a delay-aware energy-efficient power allocation and UAV trajectory design (DEPATD)… More >

  • Open Access

    ARTICLE

    ANNDRA-IoT: A Deep Learning Approach for Optimal Resource Allocation in Internet of Things Environments

    Abdullah M. Alqahtani1,*, Kamran Ahmad Awan2, Abdulaziz Almaleh3, Osama Aletri4

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.3, pp. 3155-3179, 2025, DOI:10.32604/cmes.2025.061472 - 03 March 2025

    Abstract Efficient resource management within Internet of Things (IoT) environments remains a pressing challenge due to the increasing number of devices and their diverse functionalities. This study introduces a neural network-based model that uses Long-Short-Term Memory (LSTM) to optimize resource allocation under dynamically changing conditions. Designed to monitor the workload on individual IoT nodes, the model incorporates long-term data dependencies, enabling adaptive resource distribution in real time. The training process utilizes Min-Max normalization and grid search for hyperparameter tuning, ensuring high resource utilization and consistent performance. The simulation results demonstrate the effectiveness of the proposed method, More >

  • Open Access

    REVIEW

    On Optimizing Resource Allocation: A Comparative Review of Resource Allocation Strategies in HetNets

    Jeta Dobruna1,2, Zana Limani Fazliu2,*, Iztok Humar1, Mojca Volk1

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.3, pp. 2211-2245, 2025, DOI:10.32604/cmes.2025.059541 - 03 March 2025

    Abstract Resource allocation remains a challenging issue in communication networks, and its complexity is continuously increasing with the densification of the networks. With the evolution of new wireless technologies such as Fifth Generation (5G) and Sixth Generation (6G) mobile networks, the service level requirements have become stricter and more heterogeneous depending on the use case. In this paper, we review a large body of literature on various resource allocation schemes that are used in particular in mobile wireless communication networks and compare the proposed schemes in terms of performance indicators as well as techniques used. Our… More >

  • Open Access

    ARTICLE

    MATD3-Based End-Edge Collaborative Resource Optimization for NOMA-Assisted Industrial Wireless Networks

    Ru Hao1,2,3, Chi Xu2,3,*, Jing Liu1

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 3203-3222, 2025, DOI:10.32604/cmc.2024.059689 - 17 February 2025

    Abstract Non-orthogonal multiple access (NOMA) technology has recently been widely integrated into multi-access edge computing (MEC) to support task offloading in industrial wireless networks (IWNs) with limited radio resources. This paper minimizes the system overhead regarding task processing delay and energy consumption for the IWN with hybrid NOMA and orthogonal multiple access (OMA) schemes. Specifically, we formulate the system overhead minimization (SOM) problem by considering the limited computation and communication resources and NOMA efficiency. To solve the complex mixed-integer nonconvex problem, we combine the multi-agent twin delayed deep deterministic policy gradient (MATD3) and convex optimization, namely More >

  • Open Access

    ARTICLE

    A Multi-Objective Clustered Input Oriented Salp Swarm Algorithm in Cloud Computing

    Juliet A. Murali1,*, Brindha T.2

    CMC-Computers, Materials & Continua, Vol.81, No.3, pp. 4659-4690, 2024, DOI:10.32604/cmc.2024.058115 - 19 December 2024

    Abstract Infrastructure as a Service (IaaS) in cloud computing enables flexible resource distribution over the Internet, but achieving optimal scheduling remains a challenge. Effective resource allocation in cloud-based environments, particularly within the IaaS model, poses persistent challenges. Existing methods often struggle with slow optimization, imbalanced workload distribution, and inefficient use of available assets. These limitations result in longer processing times, increased operational expenses, and inadequate resource deployment, particularly under fluctuating demands. To overcome these issues, a novel Clustered Input-Oriented Salp Swarm Algorithm (CIOSSA) is introduced. This approach combines two distinct strategies: Task Splitting Agglomerative Clustering (TSAC)… More >

  • Open Access

    REVIEW

    A Comprehensive Survey on Joint Resource Allocation Strategies in Federated Edge Learning

    Jingbo Zhang1, Qiong Wu1,*, Pingyi Fan2, Qiang Fan3

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 1953-1998, 2024, DOI:10.32604/cmc.2024.057006 - 18 November 2024

    Abstract Federated Edge Learning (FEL), an emerging distributed Machine Learning (ML) paradigm, enables model training in a distributed environment while ensuring user privacy by using physical separation for each user’s data. However, with the development of complex application scenarios such as the Internet of Things (IoT) and Smart Earth, the conventional resource allocation schemes can no longer effectively support these growing computational and communication demands. Therefore, joint resource optimization may be the key solution to the scaling problem. This paper simultaneously addresses the multifaceted challenges of computation and communication, with the growing multiple resource demands. We… More >

  • Open Access

    ARTICLE

    Computation Offloading in Edge Computing for Internet of Vehicles via Game Theory

    Jianhua Liu*, Jincheng Wei, Rongxin Luo, Guilin Yuan, Jiajia Liu, Xiaoguang Tu

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1337-1361, 2024, DOI:10.32604/cmc.2024.056286 - 15 October 2024

    Abstract With the rapid advancement of Internet of Vehicles (IoV) technology, the demands for real-time navigation, advanced driver-assistance systems (ADAS), vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications, and multimedia entertainment systems have made in-vehicle applications increasingly computing-intensive and delay-sensitive. These applications require significant computing resources, which can overwhelm the limited computing capabilities of vehicle terminals despite advancements in computing hardware due to the complexity of tasks, energy consumption, and cost constraints. To address this issue in IoV-based edge computing, particularly in scenarios where available computing resources in vehicles are scarce, a multi-master and multi-slave double-layer game model More >

  • Open Access

    ARTICLE

    AMAD: Adaptive Mapping Approach for Datacenter Networks, an Energy-Friend Resource Allocation Framework via Repeated Leader Follower Game

    Ahmad Nahar Quttoum1,*, Muteb Alshammari2

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4577-4601, 2024, DOI:10.32604/cmc.2024.054102 - 12 September 2024

    Abstract Cloud Datacenter Network (CDN) providers usually have the option to scale their network structures to allow for far more resource capacities, though such scaling options may come with exponential costs that contradict their utility objectives. Yet, besides the cost of the physical assets and network resources, such scaling may also impose more loads on the electricity power grids to feed the added nodes with the required energy to run and cool, which comes with extra costs too. Thus, those CDN providers who utilize their resources better can certainly afford their services at lower price-units when… More >

  • Open Access

    ARTICLE

    Adaptive Resource Allocation Algorithm for 5G Vehicular Cloud Communication

    Huanhuan Li1,2,*, Hongchang Wei2, Zheliang Chen2, Yue Xu3

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 2199-2219, 2024, DOI:10.32604/cmc.2024.052155 - 15 August 2024

    Abstract The current resource allocation in 5G vehicular networks for mobile cloud communication faces several challenges, such as low user utilization, unbalanced resource allocation, and extended adaptive allocation time. We propose an adaptive allocation algorithm for mobile cloud communication resources in 5G vehicular networks to address these issues. This study analyzes the components of the 5G vehicular network architecture to determine the performance of different components. It is ascertained that the communication modes in 5G vehicular networks for mobile cloud communication include in-band and out-of-band modes. Furthermore, this study analyzes the single-hop and multi-hop modes in… More >

Displaying 1-10 on page 1 of 96. Per Page