Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (30)
  • Open Access

    ARTICLE

    Turbulent Double-Diffusive Natural Convection and Entropy Generation within an Inclined Square Cavity

    Khaled Said*, Ahmed Ouadha, Amina Sabeur

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.6, pp. 1619-1629, 2022, DOI:10.32604/fdmp.2022.022220 - 27 June 2022

    Abstract The present study deals with double-diffusive convection within a two-dimensional inclined cavity filled with an air-CO2 binary gas mixture. The left and the right vertical walls are differentially heated and subjected to different locations of (CO2) contaminants to allow for the variation of the buoyancy strength (N). However, the horizontal walls are assumed adiabatic. The simulations are conducted using the finite volume method to solve the conservation equations of continuity, momentum, energy, and species transport. Good agreement with other numerical results in the literature is obtained. The effect of multiple parameters, namely, buoyancy ratio (N), thermal More >

  • Open Access

    ARTICLE

    A Study on Heat Transfer Enhancement through Various Nanofluids in a Square Cavity with Localized Heating

    Sheikh Hassan1, Didarul Ahasan Redwan1, Md. Mamun Molla1,2,*, Sharaban Thohura3, M. Abu Taher4, Sadia Siddiqa5

    Energy Engineering, Vol.118, No.6, pp. 1659-1679, 2021, DOI:10.32604/EE.2021.017657 - 10 September 2021

    Abstract A two-dimensional (2D) laminar flow of nanofluids confined within a square cavity having localized heat source at the bottom wall has been investigated. The governing Navier–Stokes and energy equations have been non dimensionalized using the appropriate non dimensional variables and then numerically solved using finite volume method. The flow was controlled by a range of parameters such as Rayleigh number, length of heat source and nanoparticle volume fraction. The numerical results are represented in terms of isotherms, streamlines, velocity and temperature distribution as well as the local and average rate of heat transfer. A comparative More >

  • Open Access

    ARTICLE

    Mixed Convection in a Two-Sided Lid-Driven Square Cavity Filled with Different Types of Nanoparticles: A Comparative Study Assuming Nanoparticles with Different Shapes

    Mostafa Zaydan1, Mehdi Riahi1,2,*, Fateh Mebarek-Oudina3, Rachid Sehaqui1

    FDMP-Fluid Dynamics & Materials Processing, Vol.17, No.4, pp. 789-819, 2021, DOI:10.32604/fdmp.2021.015422 - 17 May 2021

    Abstract Steady, laminar mixed convection inside a lid-driven square cavity filled with nanofluid is investigated numerically. We consider the case where the right and left walls are moving downwards and upwards respectively and maintained at different temperatures while the other two horizontal ones are kept adiabatic and impermeable. The set of nonlinear coupled governing mass, momentum, and energy equations are solved using an extensively validated and a highly accurate finite difference method of fourth-order. Comparisons with previously conducted investigations on special configurations are performed and show an excellent agreement. Meanwhile, attention is focused on the heat… More >

  • Open Access

    ARTICLE

    Impacts of Heat Flux Distribution, Sloping Magnetic Field and Magnetic Nanoparticles on the Natural Convective Flow Contained in a Square Cavity

    Latifa M. Al-Balushi, M. M. Rahman*

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.3, pp. 441-463, 2020, DOI:10.32604/fdmp.2020.08551 - 25 May 2020

    Abstract In the present paper, the effect of the heat flux distribution on the natural convective flow inside a square cavity in the presence of a sloping magnetic field and magnetic nanoparticles is explored numerically. The nondimensional governing equations are solved in the framework of a finite element method implemented using the Galerkin approach. The role played by numerous model parameters in influencing the emerging thermal and concentration fields is examined; among them are: the location of the heat source and its lengthH*, the magnitude of the thermal Rayleigh number, the nanoparticles shape and volume fraction, and… More >

  • Open Access

    ARTICLE

    Effect of Richardson Number on Unsteady Mixed Convection in a Square Cavity Partially Heated From Below

    Sacia Kachi1,*, Fatima-zohra Bensouici1, Nawel Ferroudj1, Saadoun Boudebous2

    FDMP-Fluid Dynamics & Materials Processing, Vol.15, No.2, pp. 89-105, 2019, DOI:10.32604/fdmp.2019.00263

    Abstract The objective of the present study is to analyze the laminar mixed convection in a square cavity with moving cooled vertical sidewalls. A constant flux heat source with relative length l is placed in the center of the lower wall while all the other horizontal sides of the cavity are considered adiabatic. The numerical method is based on a finite difference technique where the spatial partial derivatives appearing in the governing equations are discretized using a high order scheme, and time advance is dealt with by a fourth order Runge Kutta method. The Richardson number (Ri), More >

  • Open Access

    ARTICLE

    HEAT TRANSFER AND CU-WATER NANOFLUID FLOW IN A VENTILATED CAVITY HAVING CENTRAL COOLING CYLINDER AND HEATED FROM THE BELOW CONSIDERING THREE DIFFERENT OUTLET PORT LOCATIONS

    Zoubair Boulahia* , Abderrahim Wakif, Rachid Sehaqui

    Frontiers in Heat and Mass Transfer, Vol.11, pp. 1-10, 2018, DOI:10.5098/hmt.11.11

    Abstract A numerical study has been performed to investigate mixed convection flow in a vented square cavity with circular cooling obstacle. The governing equations such as two dimensional Navier-Stokes, continuity, and energy balance equations have been solved using a finite volume discretization method with SIMPLE algorithm. The effect of the Richardson number, outlet port location and volume fraction of nanoparticles were studied. The outlet port is varied from top to bottom in order to find the maximum heat transfer rate. The results indicated that by increasing the volume fraction of nanoparticles and reducing Richardson number, the More >

  • Open Access

    ARTICLE

    A Numerical Study of the Transitions of Laminar Natural Flows in a Square Cavity

    Nouri Sabrina1,*, Abderrahmane Ghezal1, Said Abboudi2, Pierre Spiteri3

    FDMP-Fluid Dynamics & Materials Processing, Vol.14, No.2, pp. 121-135, 2018, DOI:10.3970/fdmp.2018.02045

    Abstract This paper deals with the numerical study of heat and mass transfer occurring in a cavity filled with a low Prandtl number liquid. The model includes the momentum, energy and mass balance equations. These equations are discretized by a finite volume technique and solved in the framework of a custom SIMPLER method developed in FORTRAN. The effect of the problem characteristic parameters, namely the Lewis and Prandtl numbers, on the instability of the flow and related solute distribution is studied for positive and negative thermal and solutal buoyancy forces ratio. Nusselt and Sherwood numbers are More >

  • Open Access

    ARTICLE

    COMPUTATIONAL INVESTIGATION OF DOUBLE-DIFFUSIVE MIXED CONVECTIVE FLOW IN AN ENCLOSED SQUARE CAVITY WITH SORET EFFECT

    C. G. Mohan, A. Satheesh*

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-13, 2017, DOI:10.5098/hmt.8.36

    Abstract In this study, a two-dimensional steady state double-diffusive mixed convective flow in a square cavity with Soret effect is presented. The numerical investigation is considered with two different conditions, (a) top and bottom walls move with same velocity (Uo) towards right and (b) top wall moves towards right and bottom wall moves towards left with the same velocity (Uo). The left and right walls remain stationary. The top and bottom walls are adiabatic; the left wall is maintained at high temperature and concentration. The right wall is maintained at low temperature and concentration. Governing equations More >

  • Open Access

    ARTICLE

    MATHEMATICAL MODELLING OF UNSTEADY MHD DOUBLEDIFFUSIVE NATURAL CONVECTION FLOW IN A SQUARE CAVITY

    K. Venkatadria,*, S. Gouse Mohiddina , M. Suryanarayana Reddyb

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-9, 2017, DOI:10.5098/hmt.9.33

    Abstract Two-dimensional unsteady laminar double-diffusive free convective flow of a conducting fluid in a thermally insulated square enclosure except the left wall has been numerically studied in presence of heat generation/absorption. The Marker and Cell (MAC) method is employed for solving nonlinear momentum, energy and concentration equations and the numerical MATLAB code is validated with the previous study. The computed results are depicted graphically and discussed for various values of Rayleigh number (Ra), Hartmann number (Ha), Buoyancy ratio parameter (N), Lewis number (Le) and heat absorption/generation parameter (γ). It is observed that the rate of heat More >

  • Open Access

    ARTICLE

    CONJUGATE DOUBLE DIFFUSION IN A SQUARE CAVITY DIVIDED INTO TWO SECTIONS

    N. Ameer Ahammada,*, Sarfaraz Kamangarb

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-7, 2017, DOI:10.5098/hmt.9.24

    Abstract The current work discusses the heat and mass transfer due to a solid wall dividing the porous medium into two distinct sections. The left vertical surface of cavity is maintained at constant temperature Th and concentration Ch whereas right vertical surface is kept at isothermal temperature Tc and iso-concentration Cc such that Th>Tc and Ch>Cc. Finite element method is used to solve the governing partial differential equations. The results discussed with respect to thermal conductivity ratio, solid width, buoyancy ratio, Lewis number etc. More >

Displaying 11-20 on page 2 of 30. Per Page