Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    Durability of Green Concrete in Severe Environment

    Yonggan Yang1,2,3,4, Zihao Kang1, Binggen Zhan1,3,*, Peng Gao1,3,*, Qijun Yu1, Yanlai Xiong4, Jingfeng Wang1,3, Yunsheng Zhang5

    Journal of Renewable Materials, Vol.11, No.4, pp. 1895-1910, 2023, DOI:10.32604/jrm.2023.025059

    Abstract In this paper, the effects of different mineral admixtures and sulfate solution types on the appearance, mass change rate, relative dynamic elastic modulus, and corrosion resistance coefficient of concrete were systematically studied. X-ray Diffraction (XRD), Mercury Intrusion Porosimetry (MIP), Scanning Electron Microscopy (SEM), and X-ray Computed Tomography (X-CT) were used to explore and analyze the changes in the microstructure and the corrosion products of concrete in the sulfate solution. The results show that the existence of magnesium ions accelerates concrete deterioration. There is a critical dosage of fly ash for magnesium sulfate resistance of concrete. The magnesium sulfate resistance of… More > Graphic Abstract

    Durability of Green Concrete in Severe Environment

  • Open Access

    ARTICLE

    Effect of Dry-Wet Cycles on the Transport and Mechanical Properties of Cement Mortar Subjected to Sulfate Attack

    Wei Chen1,*, Weijie Shan1, Yue Liang1, Frederic Skoczylas2

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.3, pp. 679-696, 2023, DOI:10.32604/fdmp.2022.021249

    Abstract This study deals with the analysis of the detrimental effects of a “sulfate attack” on cement mortar for different dry-wet cycles. The mass loss, tensile strength, and gas permeability coefficient were determined and analyzed under different exposure conditions. At the same time, nitrogen adsorption (NAD), scanning electron microscopy (SEM), and X-ray diffraction (XRD) techniques were used to analyze the corresponding variations in the microstructure and the corrosion products. The results show that certain properties of the cement mortar evolve differently according to the durations of the dry-wet cycles and that some damage is caused to the mortars in aqueous solution.… More >

  • Open Access

    ARTICLE

    The Effect of Basalt Fiber on Concrete Performance under a Sulfate Attack Environment

    Qiang Su, Jinming Xu*

    Journal of Renewable Materials, Vol.11, No.1, pp. 233-244, 2023, DOI:10.32604/jrm.2023.020573

    Abstract To enhance the sulfate attack resistance performance of concrete, Sulfate erosion test was carried out on basalt fiber concrete with different contents, selecting a concentration of 5% sulfate solution and using a dry−wet cycle mechanism attack of basalt fiber-reinforced concrete (BFRC). Every 15 dry−wet cycles, the mass, compressive strength, splitting tensile strength, and relative dynamic elastic modulus of BFRC were tested, and the SO42− concentration was measured. This work demonstrates that the mass, relative dynamic elastic modulus, compressive and splitting tensile strength of BFRC reveal a trend of climb up and then decline with the process of the dry−wet cycle.… More >

  • Open Access

    ARTICLE

    Study on the Durability of Recycled Powder Concrete against Sulfate Attack under Partial Immersion Condition

    Hualei Bai1,2, Ying Li1,2,*, Dahu Dai1,2

    Journal of Renewable Materials, Vol.10, No.11, pp. 3059-3078, 2022, DOI:10.32604/jrm.2022.020148

    Abstract In order to make full use of waste recycled fine powder (RFP) in concrete and achieve the goal of carbon neutrality in the concrete industry, the durability of sulfate resistance is an important aspect of evaluating the performance of recycled powder concrete (RPC). Therefore, the durability of RPC under partial sulfate immersion was studied to provide theoretical guidance for understanding the erosion mechanism of RPC. The compressive strength, mass loss, and microstructure change patterns of RPC under partial immersion of 5% Na2SO4 and MgSO4 solutions were analyzed by cubic compressive strength, mass loss rate, SEM-EDS, and XRD. The results showed… More >

Displaying 1-10 on page 1 of 4. Per Page