Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (18)
  • Open Access

    ARTICLE

    Machine Learning-Based Detection of DDoS Attacks in VANETs for Emergency Vehicle Communication

    Bappa Muktar*, Vincent Fono, Adama Nouboukpo

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 4705-4727, 2025, DOI:10.32604/cmc.2025.067733 - 23 October 2025

    Abstract Vehicular Ad Hoc Networks (VANETs) are central to Intelligent Transportation Systems (ITS), especially for real-time communication involving emergency vehicles. Yet, Distributed Denial of Service (DDoS) attacks can disrupt safety-critical channels and undermine reliability. This paper presents a robust, scalable framework for detecting DDoS attacks in highway VANETs. We construct a new dataset with Network Simulator 3 (NS-3) and Simulation of Urban Mobility (SUMO), enriched with real mobility traces from Germany’s A81 highway (OpenStreetMap). Three traffic classes are modeled: DDoS, Voice over IP (VoIP), and Transmission Control Protocol Based (TCP-based) video streaming (VideoTCP). The pipeline includes normalization,… More >

  • Open Access

    ARTICLE

    NetST: Network Encrypted Traffic Classification Based on Swin Transformer

    Jianwei Zhang1,*, Hongying Zhao2, Yuan Feng3,*, Zengyu Cai2, Liang Zhu2

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 5279-5298, 2025, DOI:10.32604/cmc.2025.066367 - 30 July 2025

    Abstract Network traffic classification is a crucial research area aimed at improving quality of service, simplifying network management, and enhancing network security. To address the growing complexity of cryptography, researchers have proposed various machine learning and deep learning approaches to tackle this challenge. However, existing mainstream methods face several general issues. On one hand, the widely used Transformer architecture exhibits high computational complexity, which negatively impacts its efficiency. On the other hand, traditional methods are often unreliable in traffic representation, frequently losing important byte information while retaining unnecessary biases. To address these problems, this paper introduces More >

  • Open Access

    ARTICLE

    ONTDAS: An Optimized Noise-Based Traffic Data Augmentation System for Generalizability Improvement of Traffic Classifiers

    Rongwei Yu1, Jie Yin1,*, Jingyi Xiang1, Qiyun Shao2, Lina Wang1

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 365-391, 2025, DOI:10.32604/cmc.2025.064438 - 09 June 2025

    Abstract With the emergence of new attack techniques, traffic classifiers usually fail to maintain the expected performance in real-world network environments. In order to have sufficient generalizability to deal with unknown malicious samples, they require a large number of new samples for retraining. Considering the cost of data collection and labeling, data augmentation is an ideal solution. We propose an optimized noise-based traffic data augmentation system, ONTDAS. The system uses a gradient-based searching algorithm and an improved Bayesian optimizer to obtain optimized noise. The noise is injected into the original samples for data augmentation. Then, an More >

  • Open Access

    ARTICLE

    Ensemble Encoder-Based Attack Traffic Classification for Secure 5G Slicing Networks

    Min-Gyu Kim1, Hwankuk Kim2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.2, pp. 2391-2415, 2025, DOI:10.32604/cmes.2025.063558 - 30 May 2025

    Abstract This study proposes an efficient traffic classification model to address the growing threat of distributed denial-of-service (DDoS) attacks in 5th generation technology standard (5G) slicing networks. The proposed method utilizes an ensemble of encoder components from multiple autoencoders to compress and extract latent representations from high-dimensional traffic data. These representations are then used as input for a support vector machine (SVM)-based metadata classifier, enabling precise detection of attack traffic. This architecture is designed to achieve both high detection accuracy and training efficiency, while adapting flexibly to the diverse service requirements and complexity of 5G network… More >

  • Open Access

    ARTICLE

    DMF: A Deep Multimodal Fusion-Based Network Traffic Classification Model

    Xiangbin Wang1, Qingjun Yuan1,*, Weina Niu2, Qianwei Meng1, Yongjuan Wang1, Chunxiang Gu1

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 2267-2285, 2025, DOI:10.32604/cmc.2025.061767 - 16 April 2025

    Abstract With the rise of encrypted traffic, traditional network analysis methods have become less effective, leading to a shift towards deep learning-based approaches. Among these, multimodal learning-based classification methods have gained attention due to their ability to leverage diverse feature sets from encrypted traffic, improving classification accuracy. However, existing research predominantly relies on late fusion techniques, which hinder the full utilization of deep features within the data. To address this limitation, we propose a novel multimodal encrypted traffic classification model that synchronizes modality fusion with multiscale feature extraction. Specifically, our approach performs real-time fusion of modalities More >

  • Open Access

    ARTICLE

    TMC-GCN: Encrypted Traffic Mapping Classification Method Based on Graph Convolutional Networks

    Baoquan Liu1,3, Xi Chen2,3, Qingjun Yuan2,3, Degang Li2,3, Chunxiang Gu2,3,*

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 3179-3201, 2025, DOI:10.32604/cmc.2024.059688 - 17 February 2025

    Abstract With the emphasis on user privacy and communication security, encrypted traffic has increased dramatically, which brings great challenges to traffic classification. The classification method of encrypted traffic based on GNN can deal with encrypted traffic well. However, existing GNN-based approaches ignore the relationship between client or server packets. In this paper, we design a network traffic topology based on GCN, called Flow Mapping Graph (FMG). FMG establishes sequential edges between vertexes by the arrival order of packets and establishes jump-order edges between vertexes by connecting packets in different bursts with the same direction. It not… More >

  • Open Access

    ARTICLE

    TB-Graph: Enhancing Encrypted Malicious Traffic Classification through Relational Graph Attention Networks

    Ming Liu, Qichao Yang, Wenqing Wang, Shengli Liu*

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 2985-3004, 2025, DOI:10.32604/cmc.2024.059417 - 17 February 2025

    Abstract The proliferation of internet traffic encryption has become a double-edged sword. While it significantly enhances user privacy, it also inadvertently shields cyber-attacks from detection, presenting a formidable challenge to cybersecurity. Traditional machine learning and deep learning techniques often fall short in identifying encrypted malicious traffic due to their inability to fully extract and utilize the implicit relational and positional information embedded within data packets. This limitation has led to an unresolved challenge in the cybersecurity community: how to effectively extract valuable insights from the complex patterns of traffic packet transmission. Consequently, this paper introduces the… More >

  • Open Access

    ARTICLE

    HGNN-ETC: Higher-Order Graph Neural Network Based on Chronological Relationships for Encrypted Traffic Classification

    Rongwei Yu, Xiya Guo*, Peihao Zhang, Kaijuan Zhang

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2643-2664, 2024, DOI:10.32604/cmc.2024.056165 - 18 November 2024

    Abstract Encrypted traffic plays a crucial role in safeguarding network security and user privacy. However, encrypting malicious traffic can lead to numerous security issues, making the effective classification of encrypted traffic essential. Existing methods for detecting encrypted traffic face two significant challenges. First, relying solely on the original byte information for classification fails to leverage the rich temporal relationships within network traffic. Second, machine learning and convolutional neural network methods lack sufficient network expression capabilities, hindering the full exploration of traffic’s potential characteristics. To address these limitations, this study introduces a traffic classification method that utilizes… More >

  • Open Access

    ARTICLE

    Combo Packet: An Encryption Traffic Classification Method Based on Contextual Information

    Yuancong Chai, Yuefei Zhu*, Wei Lin, Ding Li

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 1223-1243, 2024, DOI:10.32604/cmc.2024.049904 - 25 April 2024

    Abstract With the increasing proportion of encrypted traffic in cyberspace, the classification of encrypted traffic has become a core key technology in network supervision. In recent years, many different solutions have emerged in this field. Most methods identify and classify traffic by extracting spatiotemporal characteristics of data flows or byte-level features of packets. However, due to changes in data transmission mediums, such as fiber optics and satellites, temporal features can exhibit significant variations due to changes in communication links and transmission quality. Additionally, partial spatial features can change due to reasons like data reordering and retransmission.… More >

  • Open Access

    ARTICLE

    BSTFNet: An Encrypted Malicious Traffic Classification Method Integrating Global Semantic and Spatiotemporal Features

    Hong Huang1, Xingxing Zhang1,*, Ye Lu1, Ze Li1, Shaohua Zhou2

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3929-3951, 2024, DOI:10.32604/cmc.2024.047918 - 26 March 2024

    Abstract While encryption technology safeguards the security of network communications, malicious traffic also uses encryption protocols to obscure its malicious behavior. To address the issues of traditional machine learning methods relying on expert experience and the insufficient representation capabilities of existing deep learning methods for encrypted malicious traffic, we propose an encrypted malicious traffic classification method that integrates global semantic features with local spatiotemporal features, called BERT-based Spatio-Temporal Features Network (BSTFNet). At the packet-level granularity, the model captures the global semantic features of packets through the attention mechanism of the Bidirectional Encoder Representations from Transformers (BERT)… More >

Displaying 1-10 on page 1 of 18. Per Page