Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access


    Numerical Simulations of Hydromagnetic Mixed Convection Flow of Nanofluids inside a Triangular Cavity on the Basis of a Two-Component Nonhomogeneous Mathematical Model

    Khadija A. Al-Hassani1, M. S. Alam2, M. M. Rahman1,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.17, No.1, pp. 1-20, 2021, DOI:10.32604/fdmp.2021.013497

    Abstract Nanofluids have enjoyed a widespread use in many technological applications due to their peculiar properties. Numerical simulations are presented about the unsteady behavior of mixed convection of Fe3O4-water, Fe3O4- kerosene, Fe3O4-ethylene glycol, and Fe3O4-engine oil nanofluids inside a lid-driven triangular cavity. In particular, a two-component non-homogeneous nanofluid model is used. The bottom wall of the enclosure is insulated, whereas the inclined wall is kept a constant (cold) temperature and various temperature laws are assumed for the vertical wall, namely: θ = 1(Case 1), θ = Y(1 – Y)(Case 2), and θ = sin(2πY)(Case 3). A tilted magnetic field of More >

  • Open Access


    Solutions for Incompressible Viscous Flow in a Triangular Cavity using Cartesian Grid Method

    B. M. Pasquim1, V. C. Mariani2

    CMES-Computer Modeling in Engineering & Sciences, Vol.35, No.2, pp. 113-132, 2008, DOI:10.3970/cmes.2008.035.113

    Abstract This study presents a Cartesian grid method and its application to solve a steady flow in a lid-driven triangular two-dimensional cavity. The evolution of stream function and vorticity inside a triangular lid-driven cavity, when the Reynolds number changes from 1 to 6000, is presented. For space discretization on the interior of triangular cavity orthogonal Cartesian grid is used. Then, using this grid, trapezoidal volumes appear in the interface between solid and fluid. For a suitable treatment of these volumes the Eulerian-Lagrangian methodology is used. The Navier-Stokes equations are solved numerically using finite-volume method. On the More >

  • Open Access


    Predictions of Lid-Driven Flow in a Two-Dimensional Irregular Cavity: a Numerical Study

    Bruno Manoel Pasquim1, Viviana Cocco Mariani1

    CMES-Computer Modeling in Engineering & Sciences, Vol.79, No.1, pp. 63-82, 2011, DOI:10.3970/cmes.2011.079.063

    Abstract The main aim of this study was to evaluate the capacity of a Eulerian-Lagrangian methodology (ELAFINT) to accurately deal with incompressible viscous steady flow in a domain with corners and curved boundaries. Thus, a two-dimensional lid-driven cavity with an irregular bottom was selected. The equations that govern the flow are discretized using the finite-volume method with a Cartesian grid. The evolution of the velocity fields, stream function and vorticity in the irregular cavity when the Reynolds number increases from 500 to 6000 is captured by the method under investigation. The results show that with an More >

  • Open Access


    Numerical Study of Natural Convection in a Right Triangular Enclosure with Sinusoidal Hot Wall and Different Configurations of Cold Walls

    Manoj Kr. Triveni1,*, Rajsekhar Panua2

    FDMP-Fluid Dynamics & Materials Processing, Vol.14, No.1, pp. 1-21, 2018, DOI:10.3970/fdmp.2018.014.001

    Abstract The numerical investigation of present work examines the free convection cooling of the base hot wall of a right-angled triangular cavity filled with water. The outline of the base wall is changed from smooth to sinusoidal shapes with different heights. The width (w) of the wave is fixed at 0.2 L and the height (h) of the sinusoidal shape wall is varied from 0.01 H to 0.03 H. The hot wall is cooled from the partially active side and inclined walls which are detached from the middle and structured in four different configurations namely AB,… More >

  • Open Access


    Numerical Study of Natural Convection in an Inclined Triangular Cavity for Different Thermal Boundary Conditions: Application of the Lattice Boltzmann Method

    Ahmed Mahmoudi1,2, Imen Mejri1, Mohamed Ammar Abbassi1, Ahmed Omri1

    FDMP-Fluid Dynamics & Materials Processing, Vol.9, No.4, pp. 353-388, 2013, DOI:10.3970/fdmp.2013.009.353

    Abstract A double-population Lattice Boltzmann Method (LBM) is applied to solve the steady-state laminar natural convective heat-transfer problem in a triangular cavity filled with air (Pr = 0.71). Two different boundary conditions are implemented for the vertical and inclined boundaries: Case I) adiabatic vertical wall and inclined isothermal wall, Case II) isothermal vertical wall and adiabatic inclined wall. The bottom wall is assumed to be at a constant temperature (isothermal) for both cases. The buoyancy effect is modeled in the framework of the well-known Boussinesq approximation. The velocity and temperature fields are determined by a D2Q9 More >

Displaying 1-10 on page 1 of 5. Per Page