Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (118)
  • Open Access

    ARTICLE

    Mathematical Programming Approaches for Interval Structural Behaviour and Stability Analysis

    Di Wu1, Wei Gao1,2, Chongmin Song1, Zhen Luo3

    CMES-Computer Modeling in Engineering & Sciences, Vol.108, No.5, pp. 331-373, 2015, DOI:10.3970/cmes.2015.108.331

    Abstract Two novel mathematical programming approaches are proposed to separately assess non-deterministic behaviour and stability of engineering structures against disparate uncertainties. Within the proposed computational schemes, uncertainties attributed by the material properties, loading regimes, as well as environmental influences are simultaneously incorporated and modelled by the interval approach. The proposed mathematical programming approaches proficiently transform the uncertain structural analyses into deterministic mathematical programs. Two essential aspects of structural analysis, namely linear structural behaviour and bifurcation buckling, have been explicitly investigated. Diverse verifications have been implemented to justify the accuracy and computational efficiency of the proposed approaches More >

  • Open Access

    ARTICLE

    Factorial Experiment Design in the Front Velocity Modeling Approach Applied to Chromatographic Separation of Glucose and Fructose

    A. Prieto-Moreno1, L.D.Tavares Câmara2, O. Llanes-Santiago1, A. J. Silva Neto2

    CMES-Computer Modeling in Engineering & Sciences, Vol.106, No.6, pp. 441-462, 2015, DOI:10.3970/cmes.2015.106.441

    Abstract This work deals with a statistical approach to the uncertainty propagation analysis when estimating the kinetic mass transfer parameters used to model a chromatographic column in the Simulated Moving Bed. The chromatographic column modeling was performed using the new front velocity approach. The uncertainty propagation analysis of operational factors intervening in the chromatographic process to estimated parameters was made using the response surface methodology. The application of the factorial experimental design allowed us to establish those operational factors showing a greater influence on continuous chromatography. Besides, the chromatographic regions, where factors cause a greater output More >

  • Open Access

    ARTICLE

    Variance-based Sensitivity Analyses of Piezoelectric Models

    T. Lahmer1, J. Ilg2, R. Lerch2

    CMES-Computer Modeling in Engineering & Sciences, Vol.106, No.2, pp. 105-126, 2015, DOI:10.3970/cmes.2015.106.105

    Abstract In the recent years many publications appeared putting emphasis on the simulation-based identification of piezoelectric material parameters from electrical or mechanical measurements and combinations of them. By experience, one is aware of the importance of a single input parameter. However, it is not yet fully understood and in particular quantified to which extend missing knowledge in the single parameters (parameter uncertainty) influences the quality of the model's prognosis. In this paper, we adapt and apply variance-based sensitivity measures to models describing the piezoelectric effect in the linear case and derive global information about the single More >

  • Open Access

    ARTICLE

    Long-term Analyses of Concrete-Filled Steel Tubular Arches Accounting for Interval Uncertainty

    Yong-Lin Pi1, Mark Andrew Bradford1

    CMES-Computer Modeling in Engineering & Sciences, Vol.99, No.3, pp. 233-253, 2014, DOI:10.3970/cmes.2014.099.233

    Abstract Creep and shrinkage of the concrete core of a concrete-filled steel tubular (CFST) arch under sustained loading are inevitable, and cause a long-term change of the equilibrium configuration of the CFST arch. As the equilibrium configuration changes continuously, the long-term radial and axial displacements of the CFST arch, stress distributions as well as the internal forces in the steel tube and the concrete core change substantially with time. Creep and shrinkage of the concrete core are related to a number of its material parameters such as its creep coefficient, aging coefficient, and shrinkage strain. The… More >

  • Open Access

    ARTICLE

    Matrix Crack Detection in Composite Plate with Spatially Random Material Properties using Fractal Dimension

    K. Umesh1, R. Ganguli1

    CMC-Computers, Materials & Continua, Vol.41, No.3, pp. 215-240, 2014, DOI:10.3970/cmc.2014.041.215

    Abstract Fractal dimension based damage detection method is investigated for a composite plate with random material properties. Composite material shows spatially varying random material properties because of complex manufacturing processes. Matrix cracks are considered as damage in the composite plate. Such cracks are often seen as the initial damage mechanism in composites under fatigue loading and also occur due to low velocity impact. Static deflection of the cantilevered composite plate with uniform loading is calculated using the finite element method. Damage detection is carried out based on sliding window fractal dimension operator using the static deflection. More >

  • Open Access

    ARTICLE

    A Non-probabilistic Reliability-based Optimization of Structures Using Convex Models

    Fangyi Li1,2, Zhen Luo3, Jianhua Rong1, Lin Hu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.95, No.6, pp. 453-482, 2013, DOI:10.3970/cmes.2013.095.453

    Abstract This paper aims to propose a non-probabilistic reliability-based multiobjective optimization method for structures with uncertain-but-bounded parameters. A combination of the interval and ellipsoid convex models is used to account for the different groups of uncertain parameters, in which the interval model accounts for uncorrelated parameters, while the ellipsoid model is applied to correlated parameters. The design is then formulated as a nested double-loop optimization problem. A multi-objective genetic algorithm is used in the out loop optimization to optimize the design vector for evaluating the objectives, and the Sequential Quadratic Programming (SQP) algorithm is applied in… More >

  • Open Access

    ARTICLE

    Constrained Optimization Multi-dimensional Harmonic Balance Method for Quasi-periodic Motions of Nonlinear Systems

    Haitao Liao1

    CMES-Computer Modeling in Engineering & Sciences, Vol.95, No.3, pp. 207-234, 2013, DOI:10.3970/cmes.2013.095.207

    Abstract The constrained optimization multi-dimensional harmonic balance method for calculating the quasi-periodic solutions of nonlinear systems is presented. The problem of determining the worst quasi-periodic response is transformed into a nonlinear optimization problem with nonlinear equality constraints. The general nonlinear equality constraints are built using a set of nonlinear algebraic equations which is derived using the multi-dimensional harmonic balance method. The Multi- Start algorithm is adopted to solve the resulting constrained maximization problem. Finally, the validity of the proposed method is demonstrated with a Duffing oscillator and numerical case studies for problems with uncertainties are performed More >

  • Open Access

    ARTICLE

    From Ordered to Disordered: The Effect of Microstructure on Composite Mechanical Performance

    L.B. Borkowski1, K.C. Liu1, A. Chattopadhyay1

    CMC-Computers, Materials & Continua, Vol.37, No.3, pp. 161-193, 2013, DOI:10.3970/cmc.2013.037.161

    Abstract The microstructural variation in fiber-reinforced composites has a direct relationship with its local and global mechanical performance. When micromechanical modeling techniques for unidirectional composites assume a uniform and periodic arrangement of fibers, the bounds and validity of this assumption must be quantified. The goal of this research is to quantify the influence of microstructural randomness on effective homogeneous response and local inelastic behavior. The results indicate that microstructural progression from ordered to disordered decreases the tensile modulus by 5%, increases the shear modulus by 10%, and substantially increases the magnitude of local inelastic fields. The More >

  • Open Access

    ARTICLE

    Stochastic Macro Material Properties, Through Direct Stochastic Modeling of Heterogeneous Microstructures with Randomness of Constituent Properties and Topologies, by Using Trefftz Computational Grains (TCG)

    Leiting Dong1,2, Salah H. Gamal3, Satya N. Atluri2,4

    CMC-Computers, Materials & Continua, Vol.37, No.1, pp. 1-21, 2013, DOI:10.3970/cmc.2013.037.001

    Abstract In this paper, a simple and reliable procedure of stochastic computation is combined with the highly accurate and efficient Trefftz Computational Grains (TCG), for a direct numerical simulation (DNS) of heterogeneous materials with microscopic randomness. Material properties of each material phase, and geometrical properties such as particles sizes and distribution, are considered to be stochastic with either a uniform or normal probabilistic distributions. The objective here is to determine how this microscopic randomness propagates to the macroscopic scale, and affects the stochastic characteristics of macroscopic material properties. Four steps are included in this procedure: (1)… More >

  • Open Access

    ARTICLE

    Design Optimization of Composite Cylindrical Shells under Uncertainty

    B. Kriegesmann1, R. Rolfes1, E. L. Jansen1, I. Elishakoff2, C. Hühne3, A. Kling3

    CMC-Computers, Materials & Continua, Vol.32, No.3, pp. 177-200, 2012, DOI:10.3970/cmc.2012.032.177

    Abstract Four different approaches for the design of axially compressed cylindrical shells are presented, namely (1) the knockdown factor (KDF) concept, (2) the single perturbation load approach, (3) a probabilistic design procedure and (4) the convex anti-optimization approach. The different design approaches take the imperfection sensitivity and the scatter of input parameters into account differently. In this paper, the design of a composite cylinder is optimized considering the ply angles as design variables. The KDF concept provides a very conservative design load and in addition an imperfection sensitive design, whereas the other approaches lead to a More >

Displaying 91-100 on page 10 of 118. Per Page