Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (12)
  • Open Access

    ARTICLE

    Nanofluid Flow across a Moving Plate under Blasius-Rayleigh-Stokes (BRS) Variable Transport Fluid Characteristics

    Hanumesh Vaidya1, Fateh Mebarek-Oudina2,*, K. V. Prasad1, Rajashekhar Choudhari3, Neelufer Z. Basha1, Sangeeta Kalal1

    Frontiers in Heat and Mass Transfer, Vol.22, No.1, pp. 65-78, 2024, DOI:10.32604/fhmt.2024.047879

    Abstract This investigation aims to analyze the effects of heat transport characteristics in the unsteady flow of nanofluids over a moving plate caused by a moving slot factor. The BRS variable is utilized for the purpose of analyzing these characteristics. The process of mathematical computation involves converting the governing partial differential equations into ordinary differential equations that have suitable similarity components. The Keller-Box technique is employed to solve the ordinary differential equations (ODEs) and derive the corresponding mathematical outcomes. Figures and tables present the relationship between growth characteristics and various parameters such as temperature, velocity, skin friction coefficient, concentration, Sherwood number,… More > Graphic Abstract

    Nanofluid Flow across a Moving Plate under Blasius-Rayleigh-Stokes (BRS) Variable Transport Fluid Characteristics

  • Open Access

    ARTICLE

    Thermal Radiation Effects on 2D Stagnation Point Flow of a Heated Stretchable Sheet with Variable Viscosity and MHD in a Porous Medium

    Muhammad Abaid Ur Rehman1,*, Muhammad Asif Farooq1, Ahmed M. Hassan2

    Frontiers in Heat and Mass Transfer, Vol.22, No.1, pp. 263-286, 2024, DOI:10.32604/fhmt.2023.044587

    Abstract This paper proposes a mathematical modeling approach to examine the two-dimensional flow stagnates at over a heated stretchable sheet in a porous medium influenced by nonlinear thermal radiation, variable viscosity, and MHD. This study’s main purpose is to examine how thermal radiation and varying viscosity affect fluid flow motion. Additionally, we consider the convective boundary conditions and incorporate the gyrotactic microorganisms equation, which describes microorganism behavior in response to fluid flow. The partial differential equations (PDEs) that represent the conservation equations for mass, momentum, energy, and microorganisms are then converted into a system of coupled ordinary differential equations (ODEs) through… More >

  • Open Access

    ARTICLE

    EFFECTS OF VARIABLE VISCOSITY AND VARIABLE THERMAL CONDUCTIVITY ON HYDROMAGNETIC DUSTY FLUID FLOW DUE TO A ROTATING DISK

    Jadav Konch*, G. C. Hazarika

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-10, 2017, DOI:10.5098/hmt.8.39

    Abstract This paper investigates momentum, heat and mass transfer characteristics of a hydromagnetic Newtonian dusty fluid flow due to a rotating disk with radiation and viscous dissipation. The main objective of this paper is to study effects of temperature dependent viscosity and thermal conductivity on flow, temperature and species concentration. Radiation and viscous dissipation effects are also taken into account. Saffman model for dusty fluid is considered for the problem. The partial differential equations governing the flow are converted into ordinary differential equations employing similarity transformations. The resulting highly nonlinear coupled ordinary differential equations are solved numerically using shooting technique with… More >

  • Open Access

    ARTICLE

    SCALING GROUP TRANSFORMATION FOR MIXED CONVECTION IN A POWER-LAW FLUID SATURATED POROUS MEDIUM WITH EFFECTS OF SORET, RADIATION AND VARIABLE PROPERTIES

    J. Pranithaa,* , G. Venkata Sumana , D. Srinivasacharyaa

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-8, 2017, DOI:10.5098/hmt.9.39

    Abstract An analysis is performed to investigate the influence of radiation, thermal-diffusion and variable properties on mixed convection flow, heat and mass transfer from a vertical plate in a porous medium saturated with a power-law fluid. The non-linear partial differential equations are reduced to ordinary differential equations by implementing Lie scaling group transformations. These ordinary differential equations are solved numerically by implementing a shooting technique. The numerical results for dimensionless velocity, temperature and concentration profiles for pseudo-plastic, Newtonian and dilatant fluids are presented graphically for different values of variable viscosity, variable thermal conductivity, Soret and radiation parameters. Heat and mass transfer… More >

  • Open Access

    ARTICLE

    SOLUTE TRANSPORT AND HEAT TRANSFER IN SINGLE-PHASE FLOW IN POROUS MEDIUM WITH GENERATIVE/DESTRUCTIVE CHEMICAL REACTION AND VARIABLE VISCOSITY IMPACTS

    Driss Achemlala,† , Mohammed Sritib , Mohamed El Harouib , Elyazid Flilihib , Mounir Kriraaa

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-10, 2017, DOI:10.5098/hmt.9.34

    Abstract In this paper we study the combined free convection, due to thermal and species diffusion, of a viscous incompressible non Newtonian fluid over a vertical plate embedded in a saturated porous medium with three thermal states of the surface and a constant concentration in the presence of a chemical reaction. The effect of temperature dependent viscosity is also investigated. The Ostwald-de Waele power-law model is used to characterize the non-Newtonian fluid behavior. The governing boundary layer equations along with the boundary conditions are first cast into a dimensionless form by a unique similarity transformation and the resulting coupled differential equations… More >

  • Open Access

    ARTICLE

    SORET AND DUFOUR EFFECTS ON UNSTEADY HYDROMAGNETIC DUSTY FLUID FLOW PAST AN EXPONENTIALLY ACCELERATED PLATE WITH VARIABLE VISCOSITY AND THERMAL CONDUCTIVITY

    Jadav Konch*

    Frontiers in Heat and Mass Transfer, Vol.10, pp. 1-10, 2018, DOI:10.5098/hmt.10.29

    Abstract Soret and Dufour effects on the unsteady flow of a viscous incompressible dusty fluid past an exponentially accelerated vertical plate with viscous dissipation have been considered in the presence of heat source and magnetic field. The viscosity and thermal conductivity of the fluid are assumed to be varying with respect to temperature. Saffman model of dusty fluid is considered for the investigation. The non-linear partial differential equations with prescribed boundary conditions governing the flow are discretized using Crank-Nicolson formula and the resulting finite difference equations are solved by an iterative scheme based on the Gauss-Seidel method by developing computer codes… More >

  • Open Access

    ARTICLE

    PERISTALTIC FLOW OF CASSON LIQUID IN AN INCLINED POROUS TUBE WITH CONVECTIVE BOUNDARY CONDITIONS AND VARIABLE LIQUID PROPERTIES

    C. Rajashekhara , G. Manjunathaa,† , Hanumesh Vaidyab , B. B. Divyaa , K. V. Prasadc

    Frontiers in Heat and Mass Transfer, Vol.11, pp. 1-8, 2018, DOI:10.5098/hmt.11.35

    Abstract The primary objective of this paper is to examine the impact of variable viscosity and thermal conductivity on peristaltic transport of Casson liquid in a convectively heated inclined porous tube. The viscosity differs over the radial axis, and temperature dependent thermal conductivity is taken into account. The perturbation technique is utilized to solve the governing nonlinear equations under the assumption of long wavelength and small Reynolds number. The analytical solutions are obtained for velocity, streamlines, pressure rise, frictional force, and temperature when subjected to slip and convective boundary conditions. The impacts of related parameters on physiological quantities of interest are… More >

  • Open Access

    ARTICLE

    IMPACT OF VARIABLE LIQUID PROPERTIES ON PERISTALTIC MECHANISM OF CONVECTIVELY HEATED JEFFREY FLUID IN A SLIPPERY ELASTIC TUBE

    B.B. Divyaa , G. Manjunathaa,† , C. Rajashekhara, Hanumesh Vaidyab, K.V. Prasadc

    Frontiers in Heat and Mass Transfer, Vol.12, pp. 1-9, 2019, DOI:10.5098/hmt.12.15

    Abstract The present paper examines the peristaltic mechanism of a Jeffrey fluid through an elastic tube. The influence of velocity slip, convective boundary conditions, and variable liquid properties are taken into account. Closed form solutions are obtained for velocity, flux and temperature fields. In order to linearize the temperature equation, perturbation technique is employed. Also, the flux is determined theoretically via Rubinow and Keller and Mazumdar approach and the results are compared graphically. The effects of various vital parameters on the fluid flow are sketched and analyzed graphically. The findings emphasize the importance of elastic parameters in enhancing the flux of… More >

  • Open Access

    ARTICLE

    EFFECTS OF VARIABLE VISCOSITY ON HEAT AND MASS TRANSFER BY MHD MIXED CONVECTION FLOW ALONG A VERTICAL CYLINDER EMBEDDED IN A NON-DARCY POROUS MEDIUM

    Saddam Atteyia Mohammad*

    Frontiers in Heat and Mass Transfer, Vol.14, pp. 1-10, 2020, DOI:10.5098/hmt.14.7

    Abstract An analysis was performed to study the effects of variable viscosity on steady, laminar, hydromagnetic simultaneous heat and mass transfer by mixed convection flow along a vertical cylinder embedded in a non-Darcy porous medium. The analysis was performed for the case of power-law variations of both the surface temperature and concentration. The viscosity of the fluid is assumed to be an inverse linear function of temperature. Certain transformations were employed to transform the governing differential equations to non-similar form. The transformed equations were solved numerically by finite difference method. The entire regime of mixed convection was studied. From this study… More >

  • Open Access

    ARTICLE

    STEADY MHD FLOW OVER A YAWED CYLINDER WITH MASS TRANSFER

    A. Sahaya Jenifera , P. Saikrishnana,*, J. Rajakumarb

    Frontiers in Heat and Mass Transfer, Vol.17, pp. 1-8, 2021, DOI:10.5098/hmt.17.4

    Abstract This paper examines the steady magnetohydrodynamic (MHD) flow of water over a yawed cylinder with variable fluid properties and non-uniform mass transfer. The impact of viscous dissipation is taken into consideration. The velocity and temperature fields are governed by coupled nonlinear partial differential equations together with boundary constraints. These governing equations are converted to dimensionless form with suitable non-similar transformations and then solved using an implicit finite difference method and the quasi-linearization technique. The results indicate that the yaw angle enhancement declines the skin friction coefficient in the axial direction and the heat transfer coefficient. It is also ascertained that… More >

Displaying 1-10 on page 1 of 12. Per Page