Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,303)
  • Open Access

    ARTICLE

    Interactive Dynamic Graph Convolution with Temporal Attention for Traffic Flow Forecasting

    Zitong Zhao1, Zixuan Zhang2, Zhenxing Niu3,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-16, 2026, DOI:10.32604/cmc.2025.069752 - 10 November 2025

    Abstract Reliable traffic flow prediction is crucial for mitigating urban congestion. This paper proposes Attention-based spatiotemporal Interactive Dynamic Graph Convolutional Network (AIDGCN), a novel architecture integrating Interactive Dynamic Graph Convolution Network (IDGCN) with Temporal Multi-Head Trend-Aware Attention. Its core innovation lies in IDGCN, which uniquely splits sequences into symmetric intervals for interactive feature sharing via dynamic graphs, and a novel attention mechanism incorporating convolutional operations to capture essential local traffic trends—addressing a critical gap in standard attention for continuous data. For 15- and 60-min forecasting on METR-LA, AIDGCN achieves MAEs of 0.75% and 0.39%, and RMSEs More >

  • Open Access

    ARTICLE

    Individual Software Expertise Formalization and Assessment from Project Management Tool Databases

    Traian-Radu Ploscă1,*, Alexandru-Mihai Pescaru2, Bianca-Valeria Rus1, Daniel-Ioan Curiac1,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-23, 2026, DOI:10.32604/cmc.2025.069707 - 10 November 2025

    Abstract Objective expertise evaluation of individuals, as a prerequisite stage for team formation, has been a long-term desideratum in large software development companies. With the rapid advancements in machine learning methods, based on reliable existing data stored in project management tools’ datasets, automating this evaluation process becomes a natural step forward. In this context, our approach focuses on quantifying software developer expertise by using metadata from the task-tracking systems. For this, we mathematically formalize two categories of expertise: technology-specific expertise, which denotes the skills required for a particular technology, and general expertise, which encapsulates overall knowledge More >

  • Open Access

    ARTICLE

    A Q-Learning Improved Particle Swarm Optimization for Aircraft Pulsating Assembly Line Scheduling Problem Considering Skilled Operator Allocation

    Xiaoyu Wen1,2, Haohao Liu1,2, Xinyu Zhang1,2, Haoqi Wang1,2, Yuyan Zhang1,2, Guoyong Ye1,2, Hongwen Xing3, Siren Liu3, Hao Li1,2,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-27, 2026, DOI:10.32604/cmc.2025.069492 - 10 November 2025

    Abstract Aircraft assembly is characterized by stringent precedence constraints, limited resource availability, spatial restrictions, and a high degree of manual intervention. These factors lead to considerable variability in operator workloads and significantly increase the complexity of scheduling. To address this challenge, this study investigates the Aircraft Pulsating Assembly Line Scheduling Problem (APALSP) under skilled operator allocation, with the objective of minimizing assembly completion time. A mathematical model considering skilled operator allocation is developed, and a Q-Learning improved Particle Swarm Optimization algorithm (QLPSO) is proposed. In the algorithm design, a reverse scheduling strategy is adopted to effectively… More >

  • Open Access

    ARTICLE

    CAFE-GAN: CLIP-Projected GAN with Attention-Aware Generation and Multi-Scale Discrimination

    Xuanhong Wang1, Hongyu Guo1, Jiazhen Li1, Mingchen Wang1, Xian Wang1, Yijun Zhang2,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-19, 2026, DOI:10.32604/cmc.2025.069482 - 10 November 2025

    Abstract Over the past decade, large-scale pre-trained autoregressive and diffusion models rejuvenated the field of text-guided image generation. However, these models require enormous datasets and parameters, and their multi-step generation processes are often inefficient and difficult to control. To address these challenges, we propose CAFE-GAN, a CLIP-Projected GAN with Attention-Aware Generation and Multi-Scale Discrimination, which incorporates a pre-trained CLIP model along with several key architectural innovations. First, we embed a coordinate attention mechanism into the generator to capture long-range dependencies and enhance feature representation. Second, we introduce a trainable linear projection layer after the CLIP text… More >

  • Open Access

    ARTICLE

    Syntax-Aware Hierarchical Attention Networks for Code Vulnerability Detection

    Yongbo Jiang, Shengnan Huang, Tao Feng, Baofeng Duan*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-22, 2026, DOI:10.32604/cmc.2025.069423 - 10 November 2025

    Abstract In the context of modern software development characterized by increasing complexity and compressed development cycles, traditional static vulnerability detection methods face prominent challenges including high false positive rates and missed detections of complex logic due to their over-reliance on rule templates. This paper proposes a Syntax-Aware Hierarchical Attention Network (SAHAN) model, which achieves high-precision vulnerability detection through grammar-rule-driven multi-granularity code slicing and hierarchical semantic fusion mechanisms. The SAHAN model first generates Syntax Independent Units (SIUs), which slices the code based on Abstract Syntax Tree (AST) and predefined grammar rules, retaining vulnerability-sensitive contexts. Following this, through More >

  • Open Access

    ARTICLE

    A Transformer-Based Deep Learning Framework with Semantic Encoding and Syntax-Aware LSTM for Fake Electronic News Detection

    Hamza Murad Khan1, Shakila Basheer2, Mohammad Tabrez Quasim3, Raja`a Al-Naimi4, Vijaykumar Varadarajan5, Anwar Khan1,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-25, 2026, DOI:10.32604/cmc.2025.069327 - 10 November 2025

    Abstract With the increasing growth of online news, fake electronic news detection has become one of the most important paradigms of modern research. Traditional electronic news detection techniques are generally based on contextual understanding, sequential dependencies, and/or data imbalance. This makes distinction between genuine and fabricated news a challenging task. To address this problem, we propose a novel hybrid architecture, T5-SA-LSTM, which synergistically integrates the T5 Transformer for semantically rich contextual embedding with the Self-Attention-enhanced (SA) Long Short-Term Memory (LSTM). The LSTM is trained using the Adam optimizer, which provides faster and more stable convergence compared… More >

  • Open Access

    ARTICLE

    A Blockchain-Based Efficient Verification Scheme for Context Semantic-Aware Ciphertext Retrieval

    Haochen Bao1, Lingyun Yuan1,2,*, Tianyu Xie1,2, Han Chen1, Hui Dai1

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-30, 2026, DOI:10.32604/cmc.2025.069240 - 10 November 2025

    Abstract In the age of big data, ensuring data privacy while enabling efficient encrypted data retrieval has become a critical challenge. Traditional searchable encryption schemes face difficulties in handling complex semantic queries. Additionally, they typically rely on honest but curious cloud servers, which introduces the risk of repudiation. Furthermore, the combined operations of search and verification increase system load, thereby reducing performance. Traditional verification mechanisms, which rely on complex hash constructions, suffer from low verification efficiency. To address these challenges, this paper proposes a blockchain-based contextual semantic-aware ciphertext retrieval scheme with efficient verification. Building on existing… More >

  • Open Access

    ARTICLE

    Compatible Remediation for Vulnerabilities in the Presence and Absence of Security Patches

    Xiaohu Song1, Zhiliang Zhu2,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-19, 2026, DOI:10.32604/cmc.2025.068930 - 10 November 2025

    Abstract Vulnerabilities are a known problem in modern Open Source Software (OSS). Most developers often rely on third-party libraries to accelerate feature implementation. However, these libraries may contain vulnerabilities that attackers can exploit to propagate malicious code, posing security risks to dependent projects. Existing research addresses these challenges through Software Composition Analysis (SCA) for vulnerability detection and remediation. Nevertheless, current solutions may introduce additional issues, such as incompatibilities, dependency conflicts, and additional vulnerabilities. To address this, we propose Vulnerability Scan and Protection (), a robust solution for detection and remediation vulnerabilities in Java projects. Specifically, builds… More >

  • Open Access

    ARTICLE

    Towards Decentralized IoT Security: Optimized Detection of Zero-Day Multi-Class Cyber-Attacks Using Deep Federated Learning

    Misbah Anwer1,*, Ghufran Ahmed1, Maha Abdelhaq2, Raed Alsaqour3, Shahid Hussain4, Adnan Akhunzada5,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-15, 2026, DOI:10.32604/cmc.2025.068673 - 10 November 2025

    Abstract The exponential growth of the Internet of Things (IoT) has introduced significant security challenges, with zero-day attacks emerging as one of the most critical and challenging threats. Traditional Machine Learning (ML) and Deep Learning (DL) techniques have demonstrated promising early detection capabilities. However, their effectiveness is limited when handling the vast volumes of IoT-generated data due to scalability constraints, high computational costs, and the costly time-intensive process of data labeling. To address these challenges, this study proposes a Federated Learning (FL) framework that leverages collaborative and hybrid supervised learning to enhance cyber threat detection in… More >

  • Open Access

    ARTICLE

    LLM-KE: An Ontology-Aware LLM Methodology for Military Domain Knowledge Extraction

    Yu Tao1, Ruopeng Yang1,2, Yongqi Wen1,*, Yihao Zhong1, Kaige Jiao1, Xiaolei Gu1,2

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-17, 2026, DOI:10.32604/cmc.2025.068670 - 10 November 2025

    Abstract Since Google introduced the concept of Knowledge Graphs (KGs) in 2012, their construction technologies have evolved into a comprehensive methodological framework encompassing knowledge acquisition, extraction, representation, modeling, fusion, computation, and storage. Within this framework, knowledge extraction, as the core component, directly determines KG quality. In military domains, traditional manual curation models face efficiency constraints due to data fragmentation, complex knowledge architectures, and confidentiality protocols. Meanwhile, crowdsourced ontology construction approaches from general domains prove non-transferable, while human-crafted ontologies struggle with generalization deficiencies. To address these challenges, this study proposes an Ontology-Aware LLM Methodology for Military Domain More >

Displaying 1-10 on page 1 of 1303. Per Page