Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access


    Evaluation of Water Transfer Capacity of Poplar with Pectinase Treated under the Solar Interface Evaporation

    Wei Xiong1,2, Dagang Li1,*, Peixing Wei2, Lin Wang2, Qian Feng1

    Journal of Renewable Materials, Vol.11, No.5, pp. 2265-2278, 2023, DOI:10.32604/jrm.2023.025483

    Abstract Poplar wood, which was used as the absorption material for the solar-driven interfacial evaporation, was treated for 3 days, 6 days and 9 days with the pectinase, and then was simulated for photothermal evaporation test at one standard solar radiation intensity (1 kW⋅m−2). The effects of pectinase treatment on cell passage and water migration capacity of poplars were analyzed by the mercury intrusion porosimetry, the scanning electron microscope and fractal theory. It was found that the pit membrane and the ray parenchyma cells of poplar wood were degraded and destroyed after pectinase treatment. Compared with the untreated More >

  • Open Access


    Micro-Scale Numerical Simulation of Water Migration in Plant-Based Materials During Isothermal Drying

    Peng Wang, Huaxing Zhai, Gehan Liu, Xiaohua Wu, Dongliang Sun* and Bo Yu

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.22, No.3, pp. 149-150, 2019, DOI:10.32604/icces.2019.04963

    Abstract The isothermal drying of plant-based material, such as fruits and vegetables, is the most widely used drying technique to stabilize materiel and to increase their shelf life. However, drying is a high energy-consuming industry process, in which water removal obviously affects the quality of dried products. Therefore, it is crucial to understand the water migration mechanisms during drying for improving energy efficiency and ensuring better quality.
    Plant-based material generally has highly porous characteristics, and the major part of the water (about 80-90%) is present in the intracellular space, but not in the intercellular (pore) space.… More >

Displaying 1-10 on page 1 of 2. Per Page