Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (24,618)
  • Open Access

    ARTICLE

    Wavelet solution of a class of two-dimensional nonlinear boundary value problems

    Xiaojing Liu1, Jizeng Wang1,2, Youhe Zhou1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.92, No.5, pp. 493-505, 2013, DOI:10.3970/cmes.2013.092.493

    Abstract By combining techniques of boundary extension and Coiflet-type wavelet expansion, an approximation scheme for a function defined on a two-dimensional bounded space is proposed. In this wavelet approximation, each expansion coefficient can be directly obtained by a single-point sampling of the function. And the boundary values and derivatives of the bounded function can be embedded in the modified wavelet basis. Based on this approximation scheme, a modified wavelet Galerkin method is developed for solving two-dimensional nonlinear boundary value problems, in which the interpolating property makes the solution of such strong nonlinear problems very effective and More >

  • Open Access

    ARTICLE

    Dynamic Route Guidance Based on Model Predictive Control

    Yonghua Zhou1, Xun Yang1, Chao Mi1

    CMES-Computer Modeling in Engineering & Sciences, Vol.92, No.5, pp. 477-491, 2013, DOI:10.3970/cmes.2013.092.477

    Abstract Route selections for vehicles can be equivalent to determine the optimized operation processes for vehicles which intertwine with each other. This paper attempts to utilize the whole methodology of model predictive control to engender rational routes for vehicles, which involves three important parts, i.e. simulation prediction, rolling optimization and feedback adjustment. The route decisions are implemented over the rolling prediction horizon taking the real-time feedback information and the future intertwined operation processes into account. The driving behaviors and route selection speculations of drivers and even traffic propagation models are on-line identified and adapted for the… More >

  • Open Access

    REVIEW

    Applications of the MLPG Method in Engineering & Sciences: A Review

    J. Sladek1, P. Stanak1, Z-D. Han2, V. Sladek1, S.N. Atluri2

    CMES-Computer Modeling in Engineering & Sciences, Vol.92, No.5, pp. 423-475, 2013, DOI:10.3970/cmes.2013.092.423

    Abstract A review is presented for analysis of problems in engineering & the sciences, with the use of the meshless local Petrov-Galerkin (MLPG) method. The success of the meshless methods lie in the local nature, as well as higher order continuity, of the trial function approximations, high adaptivity and a low cost to prepare input data for numerical analyses, since the creation of a finite element mesh is not required. There is a broad variety of meshless methods available today; however the focus is placed on the MLPG method, in this paper. The MLPG method is… More >

  • Open Access

    ARTICLE

    Flexural wave dispersion in finitely pre-strained solid and hollow circular cylinders made of compressible materials

    S. D. Akbarov1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.92, No.4, pp. 387-421, 2013, DOI:10.3970/cmes.2013.092.387

    Abstract Flexural wave dispersion in finitely pre-stretched (or pre-compressed) solid and hollow, circular cylinders is investigated with the use of the threedimensional linearized theory of elastic waves in initially stressed bodies. It is assumed that the initial strains in the cylinders are homogeneous and correspond to the uniaxial tension, or compression, along their central axes. The elasticity relations of the cylinders’ materials are described by the harmonic potential. The analytical solution of the corresponding field equations is presented and, using these solutions, the dispersion equations for the cases under consideration are obtained. The dispersion equations are… More >

  • Open Access

    ARTICLE

    Solution of Quadratic Integral Equations by the Adomian Decomposition Method

    Shou-Zhong Fu1, Zhong Wang1, Jun-Sheng Duan1,2,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.92, No.4, pp. 369-385, 2013, DOI:10.3970/cmes.2013.092.369

    Abstract Quadratic integral equations are a class of nonlinear integral equations having many important uses in engineering and sciences. In this work we display an efficient application of the Adomian decomposition method to the quadratic integral equations of Volterra type. The analytical approximate solution obtained can be directly inserted into the original equation to verify the accuracy and estimate the error with a computing software. Four numerical examples demonstrate the efficiency of the method. More >

  • Open Access

    ARTICLE

    Wavelet operational matrix method for solving fractional integral and differential equations of Bratu-type

    Lifeng Wang1, Yunpeng Ma1, Zhijun Meng1, Jun Huang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.92, No.4, pp. 353-368, 2013, DOI:10.3970/cmes.2013.092.353

    Abstract In this paper, a wavelet operational matrix method based on the second kind Chebyshev wavelet is proposed to solve the fractional integral and differential equations of Bratu-type. The second kind Chebyshev wavelet operational matrix of fractional order integration is derived. A truncated second kind Chebyshev wavelet series together with the wavelet operational matrix is utilized to reduce the fractional integral and differential equations of Bratu-type to a system of nonlinear algebraic equations. The convergence and the error analysis of the method are also given. Two examples are included to verify the validity and applicability of More >

  • Open Access

    ARTICLE

    Simulation of Natural Convection Influenced by Magnetic Field with Explicit Local Radial Basis Function Collocation Method

    K. Mramor1, R. Vertnik2,3, B. Šarler1,3,4,5

    CMES-Computer Modeling in Engineering & Sciences, Vol.92, No.4, pp. 327-352, 2013, DOI:10.3970/cmes.2013.092.327

    Abstract The purpose of the present paper is to extend and explore the application of a novel meshless Local Radial Basis Function Collocation Method (LRBFCM) in solution of a steady, laminar, natural convection flow, influenced by magnetic field. The problem is defined by coupled mass, momentum, energy and induction equations that are solved in two dimensions by using local collocation with multiquadrics radial basis functions on an overlapping five nodded subdomains and explicit time-stepping. The fractional step method is used to couple the pressure and velocity fields. The considered problem is calculated in a square cavity… More >

  • Open Access

    ARTICLE

    Computer Modeling Chemical Vapor Infiltration of SiC Composites

    Yaochan Zhu1, Eckart Schnack1, Al Mahmudur Rahman1

    CMES-Computer Modeling in Engineering & Sciences, Vol.92, No.3, pp. 315-326, 2013, DOI:10.32604/cmes.2013.092.315

    Abstract A novel multiphase field model is formulated to simulate the complex microstructure evolution during chemical vapor infiltration (CVI) process, which is widely used technique to produce SiC matrix composites reinforced by SiC fibers in ceramic engineer. The model consists of a set of nonlinear partial differential equations by coupling Ginzburg-Landau type phase field equations with mass/heat balance equations as well as modified Navier-Stokes equations. The microstructure evolution of preferential codeposition of Si, SiC and C under high ratio of H2 to MTS is simulated. The simulation is in good agreement with experiments result. The potential More >

  • Open Access

    ARTICLE

    Inverse Nodal Problem for the Differential Operator with a Singularity at Zero

    Emrah Yilmaz1, Hikmet Koyunbakan2, Unal Ic3

    CMES-Computer Modeling in Engineering & Sciences, Vol.92, No.3, pp. 301-313, 2013, DOI:10.32604/cmes.2013.092.301

    Abstract In this study, some results are given about Sturm-Liouville operator having a singularity at zero. For this problem, asymptotic form of nodal data and a reconstruction formula for the potential function are given. In addition, a numerical example is established and illustrated the results in some tables and graphics. More >

  • Open Access

    ARTICLE

    Modeling Imperfect Interfaces in the Material Point Method using Multimaterial Methods

    J. A. Nairn1

    CMES-Computer Modeling in Engineering & Sciences, Vol.92, No.3, pp. 271-299, 2013, DOI:10.32604/cmes.2013.092.271

    Abstract The “multimaterial” version of the material point method (MPM) extrapolates each material to its own velocity field on a background grid. By reconciling momenta on nodes interacting with two or more materials, MPM is able to automatically handle contact without any need for special contact elements. This paper extends multimaterial MPM to automatically handle imperfect interfaces between materials as well. The approach is to evaluate displacement discontinuity on multimaterial nodes and then add internal forces and interfacial energy determined by an imperfect interface traction law. The concept is simple, but implementation required numerous corrections to More >

Displaying 20751-20760 on page 2076 of 24618. Per Page