Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (30,040)
  • Open Access

    ABSTRACT

    Identification of Lysyl Oxidase on Repression of Inflammation for Promoting Anterior Cruciate Ligament Remodeling

    Yan Gao1, Chunli Wang1, Li Yang1,*

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 93-93, 2019, DOI:10.32604/mcb.2019.07322

    Abstract At present, anterior cruciate ligament (ACL) damage repair is still a huge challenge. Our previous studies indicated that the Lysyl oxidase (LOX) were significantly reduced in injurious ACL fibroblasts, which is the major reason for its poor healing ability. The main purpose of our study was to detected the potential of LOX to act as an anabolic agent in injured ACL. The effect of LOX on the ACL at a concentration of 20ng/mL was investigated. The molecular mechanisms and signaling pathway were elucidated by RNA-sequencing, q-PCR and western blotting. For the in vivo study, the… More >

  • Open Access

    ABSTRACT

    Mechanical Relaxation during Cell Reprogramming

    Yang Song1, Jennifer Soto1, Song Li1,*

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 92-92, 2019, DOI:10.32604/mcb.2019.07345

    Abstract Cell reprograming technologies have broad applications in cell therapy, disease modeling and drug screening. Direct reprogramming of fibroblasts into induced neuronal (iN) cells has been achieved via the forced expression of three transcription factors: Ascl1, Brn2 and Myt1l. Accumulative evidence suggests that biophysical factors in the microenvironment can regulate the epigenetic state and cell reprogramming. However, whether intracellular mechanical properties regulate cell reprogramming remains unknown. Here, we show for the first time, that the mechanical property of cells is modulated during the early phase of reprogramming as determined by atomic force microscopy (AFM) and high-throughput… More >

  • Open Access

    ABSTRACT

    Kinematic and Dynamic Characteristics of Pulsating Flow in 180° Tube

    Tin-Kan Hung1,*, Ruei-Hung Kuo2, Cheng-Hsien Chiang3

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 90-91, 2019, DOI:10.32604/mcb.2019.07854

    Abstract Pulsating flow in a human aortic arch is studied from its kinematic and dynamic characteristics of transient tubular boundary layer. The results can only be obtained by a 3D fluid dynamic (CFD) analysis for the rapidly accelerated and decelerated systolic flow. The flow is based on a prescribed inlet velocity, VO(t), which can be expressed as the instantaneous Reynolds number, Re(t) = ρDVO/μ in which D is the tube diameter, ρ the blood density and μ the dynamic viscosity. Computation of pressure field requires a reference pressure at the downstream end section. The pressure is based on… More >

  • Open Access

    ABSTRACT

    Dynamics of Trabecular Meshwork Deformation under Pulsatile Intraocular Pressure

    Xiuqing Qian1,2, Fan yuan1,*

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 89-89, 2019, DOI:10.32604/mcb.2019.07041

    Abstract Elevated intraocular pressure (IOP) is the most important risk factor for disease progression in glaucoma patients. The elevation is predominantly due to the increase in the aqueous outflow resistance in the trabecular outflow pathway. Recent data have shown that the resistance increase is correlated with changes in the tissue stiffness. To this end, we developed a mathematical model to simulate how the tissue stiffness can affect the deformation of the trabecular meshwork (TM) that can be determined experimentally. The goal of the study is to develop a method to non-invasively determine the TM stiffness in… More >

  • Open Access

    ABSTRACT

    Modeling Mechano-chemical Couplings in Bone Adaptation by Remodeling

    Taiji Adachi1,*, Yoshitaka Kameo1

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 88-88, 2019, DOI:10.32604/mcb.2019.07417

    Abstract Bone adaptation by remodeling is a process to change its outer shape and internal structure to the changing mechanical environment by osteoclastic bone resorption and osteoblastic bone formation. These cellular activities are regulated by mechanosensory network of osteocytes embedded in bone matrix. An imbalance between bone resorption and formation due to low loadings or disuse results in metabolic bone disorders such as osteoporosis. Many studies have identified various signaling pathways that regulate these cellular activities; however, the physiological and pathological conditions of bone as a system remain difficult to understand because of the complexity of… More >

  • Open Access

    ABSTRACT

    On the Onset of Cracks in Arteries

    Pullela Mythravaruni1, Konstantin Volokh1,*

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 87-87, 2019, DOI:10.32604/mcb.2019.07274

    Abstract We present a theoretical approach to study the onset of failure localization into cracks in arterial wall. The arterial wall is a soft composite comprising hydrated ground matrix of proteoglycans reinforced by spatially dispersed elastin and collagen fibers. As any material, the arterial tissue cannot accumulate and dissipate strain energy beyond a critical value. This critical value is enforced in the constitutive theory via energy limiters. The limiters automatically bound reachable stresses and allow examining the mathematical condition of strong ellipticity. Loss of the strong ellipticity physically means inability of material to propagate superimposed waves.… More >

  • Open Access

    ABSTRACT

    Role of Myocardial Contractions on Coronary Vasoactivity

    Xiao Lu1,*, Ghassan Kassab1

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 84-86, 2019, DOI:10.32604/mcb.2019.07089

    Abstract This article has no abstract. More >

  • Open Access

    ABSTRACT

    Histone Modification and Chromatin Reorganization Regulated by Mechanical Tension in Single Cell Mitosis

    Qin Peng1, Shaoying Lu1, Shu Chien1, Yingxiao Wang1,*

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 83-83, 2019, DOI:10.32604/mcb.2019.07385

    Abstract The dramatic re-organization of chromatin during mitosis is perhaps one of the most fundamental of all cell processes [1,2]. It remains unclear how epigenetic histone modifications, despite their crucial roles in regulating chromatin architectures, are dynamically coordinated with chromatin reorganization in controlling this process. Mechanical cues have also been shown to play important roles in modulating gene expressions and cellular functions [3,4]; however, it is still unclear about the mechanical regulations of epigenetics and chromatin organization. In this study, we have developed and characterized biosensors with high sensitivity and specificity based on fluorescence resonance energy… More >

  • Open Access

    ABSTRACT

    Engineering Zap70 Biosensor Through Directed Evolution for Applications in Single-Cell Imaging and Immunotherapy

    Longwei Liu1, Praopim Limsakul1, Shaoying (Kathy) Lu1, Peter Yingxiao Wang1,*

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 82-82, 2019, DOI:10.32604/mcb.2019.07360

    Abstract Genetically-encoded biosensors based on Fluorescence Resonance Energy Transfer (FRET biosensors) have been widely used to dynamically track the activity of Protein Tyrosine Kinases (PTKs) in living cells because of their sensitive ratiometric fluorescence readout, high spatiotemporal resolution. However, the limitation in sensitivity, specificity, and dynamic range of these biosensors have hindered their broader applications, and there was a lack of efficient ways to optimize FRET biosensors. Here we established a rapid, systematic and universal approach for FRET biosensor optimization through directed evolution which involves generating genetic diversity and screening for protein variants with desired properties… More >

  • Open Access

    ABSTRACT

    Dependency of Nuclear Deformation of Smooth Muscle Cells on Tissue Stretch Direction May Explain Anisotropic Response of Aortic Wall to Hypertension

    Takeo Matsumoto1,*, Chizuru Hirooka1, Yong Fan1, Junfeng Wang1, Naoki Mori1, Eijiro Maeda1

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 81-81, 2019, DOI:10.32604/mcb.2019.07102

    Abstract Aortic wall thickens in response to hypertension. Many studies reported that the wall thickening occurs to maintain the wall stress in the circumferential direction at a constant level. In case of the longitudinal direction, however, there are few studies suggesting the constancy of the stress. Such anisotropic response may be attributable to the circumferential alignment of the smooth muscle cells (SMCs) in the wall [1]. However, to the authors’ knowledge, there are no study discussing the underlying mechanism of the anisotropic response. It has been reported that mechanical deformation of the nuclei causes transcription upregulation… More >

Displaying 20751-20760 on page 2076 of 30040. Per Page