Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (16,951)
  • Open Access

    ARTICLE

    Process Characterization of the Transesterification of Rapeseed Oil to Biodiesel Using Design of Experiments and Infrared Spectroscopy

    Tobias Drieschner1,2,*, Andreas Kandelbauer1, Bernd Hitzmann2, Karsten Rebner1

    Journal of Renewable Materials, Vol.11, No.4, pp. 1643-1660, 2023, DOI:10.32604/jrm.2023.024429

    Abstract For optimization of production processes and product quality, often knowledge of the factors influencing the process outcome is compulsory. Thus, process analytical technology (PAT) that allows deeper insight into the process and results in a mathematical description of the process behavior as a simple function based on the most important process factors can help to achieve higher production efficiency and quality. The present study aims at characterizing a well-known industrial process, the transesterification reaction of rapeseed oil with methanol to produce fatty acid methyl esters (FAME) for usage as biodiesel in a continuous micro reactor set-up. To this end, a… More >

  • Open Access

    REVIEW

    Research Progress on Structure and Bioactivity of Longan Polysaccharide

    Xiaolong Ji1,#, Shuli Zhang1,#, Xueyuan Jin2, Xin Yuan1, Siqi Zhang1, Xudan Guo3,*, Fengcheng Shi4,*, Yanqi Liu1

    Journal of Renewable Materials, Vol.11, No.4, pp. 1631-1642, 2023, DOI:10.32604/jrm.2023.025844

    Abstract Longan originates from southern China and has high nutritional and health value. Recent phytochemistry and pharmacology studies have shown that polysaccharides are a main bioactive component of longan. Longan polysaccharides possess antioxidant, anti-aging, anti-tumor, immunomodulatory, and other bioactivities. Hot-water extraction, ethanol precipitation, and ultrasonic extraction are generally used to extract water-soluble longan polysaccharides. However, the relationship between the structure and bioactivity of longan polysaccharides remains unclear, requiring further investigation. The aim of this review is to evaluate the current literature focusing on the extraction, purification, structural characterization, and biological activity of longan polysaccharides. We believe that this review would provide… More >

  • Open Access

    ARTICLE

    Expansive Soil Stabilization by Bagasse Ash in Partial Replacement of Cement

    Waleed Awadalseed1, Honghua Zhao1, Hemei Sun2, Ming Huang3, Cong Liu4,*

    Journal of Renewable Materials, Vol.11, No.4, pp. 1911-1935, 2023, DOI:10.32604/jrm.2023.025100

    Abstract This study examined the effects of using bagasse ash in replacement of ordinary Portland cement (OPC) in the treatment of expansive soils. The study concentrated on the compaction characteristics, volume change, compressive strength, splitting tensile strength, microstructure, California bearing ratio (CBR) value, and shear wave velocity of expansive soils treated with cement. Different bagasse ash replacement ratios were used to create soil samples. At varying curing times of 7, 14, and 28 days, standard compaction tests, unconfined compressive strength tests, CBR tests, Brazilian split tensile testing, and bender element (BE) tests were carried out. According to X-ray diffraction (XRD) investigations,… More >

  • Open Access

    ARTICLE

    Study of Thermal, Phase Morphological and Mechanical Properties of Poly(L-lactide)-b-Poly(ethylene glycol)-b-Poly(L-lactide)/Poly(ethylene glycol) Blend Bioplastics

    Yodthong Baimark*, Theeraphol Phromsopha

    Journal of Renewable Materials, Vol.11, No.4, pp. 1881-1894, 2023, DOI:10.32604/jrm.2023.025400

    Abstract A poly(L-lactide)-b-poly(ethylene glycol)-b-poly(L-lactide)(PLLA-PEG-PLLA) block copolymer has great potential for use as a flexible bioplastic. Highly flexible bioplastics are required for flexible packaging applications. In this work, a PEG was incorporated into block copolymer as a plasticizer by solvent casting. PLLA-PEG-PLLA/ PEG blends with different blend ratios were prepared, and the plasticizing effect and miscibility of PEG in block copolymer were intensively investigated compared to PLLA/PEG blends. The results indicated that the PEG was an effective plasticizer for the block copolymer. The blending of PEG decreased glass-transition temperature and accelerated the crystallization of both the PLLA and PLLA-PEG-PLLA matrices. The PEG… More > Graphic Abstract

    Study of Thermal, Phase Morphological and Mechanical Properties of Poly(L-lactide)-b-Poly(ethylene glycol)-b-Poly(L-lactide)/Poly(ethylene glycol) Blend Bioplastics

  • Open Access

    ARTICLE

    Preparation and Characterization of Thermoplastic Starch from Sugar Palm (Arenga pinnata) by Extrusion Method

    Muhammad Ghozali1,2, Yenny Meliana2, Widya Fatriasari3, Petar Antov4, Mochamad Chalid1,*

    Journal of Renewable Materials, Vol.11, No.4, pp. 1963-1976, 2023, DOI:10.32604/jrm.2023.026060

    Abstract Sugar palm (Arenga pinnata) starch is considered an important renewable, biodegradable, and eco-friendly polymer, which is derived from agricultural by-products and residues, with great potential for the development of biocomposite materials. This research was aimed at investigating the development of TPS biocomposites from A. pinnata palm starch using an extrusion process. Palm starch, glycerol, and stearic acid were extruded in a twin-screw extruder. Scanning electron microscopy (SEM) analysis of TPS showed that the starch granules were damaged and gelatinized in the extrusion process. The density of TPS was 1.3695 g/mL, lower than that of palm starch, and the addition of… More > Graphic Abstract

    Preparation and Characterization of Thermoplastic Starch from Sugar Palm (<i>Arenga pinnata</i>) by Extrusion Method

  • Open Access

    ARTICLE

    Evaluation of Novel Chitosan Based Composites Coating on Wettability for Pure Titanium Implants

    Qahtan A. Hamad1, Hanaa A. Al-Kaisy1, Mohanad N. Al-Shroofy1, Noor K. Faheed2,*

    Journal of Renewable Materials, Vol.11, No.4, pp. 1601-1612, 2023, DOI:10.32604/jrm.2023.023213

    Abstract This work aims to prepare chitosan (CS)-based coated layers, CS (10 wt% nanosilver/90 wt% CS, 10 wt% biotin/90 wt% CS, and 5 wt% nanosilver–5 wt% biotin)/90 wt% CS coatings are prepared, onto pure Ti substrate. The surface morphology of the novel CS composite coating was studied using field emission scanning electron microscopy, atomic force microscopy (AFM), Fourier transforms infrared (FTIR) and wettability test. Results show that the addition of (biotin, nanosilver) 5 Vol.% improves the properties of composite materials. Using different particles’ scale size aid in improving the combinations in the alginate, producing a dual effect on film properties. Coating… More > Graphic Abstract

    Evaluation of Novel Chitosan Based Composites Coating on Wettability for Pure Titanium Implants

  • Open Access

    ARTICLE

    Effect of Polypropylene Fiber on the Unconfined Compressive Strength of Loess with Different Water Content

    Wankui Ni1, Jiaxin Zhong1,2, Haiman Wang1,*

    Journal of Renewable Materials, Vol.11, No.4, pp. 1699-1814, 2023, DOI:10.32604/jrm.2022.023805

    Abstract Fiber-reinforced soils have been of great interest to experimenters for building foundations’strength performance, time, and economy. This paper investigates the effects of water content and polypropylene fiber dosage and length on loess’s unconfined compressive strength (UCS) according to the central composite response surface design test procedure. The water content is 11%–25%, the mass ratio of fiber to soil is 0.1%–0.9%, and the fiber length ranges from 6–18 mm. The response surface method (RSM) developed full quadratic models of different variables with response values. After analysis of variance (ANOVA), the mathematical model developed in this study was statistically significant (p ≤… More > Graphic Abstract

    Effect of Polypropylene Fiber on the Unconfined Compressive Strength of Loess with Different Water Content

  • Open Access

    ARTICLE

    N-Doped rGO-Like Carbon Prepared from Coconut Shell: Structure and Specific Capacitance

    Imam Khambali1,2,*, Budhi Priyanto1,2, Retno Asih1, Malik Anjelh Baqiya1, Muhammad Mahyiddin Ramli3, Nurul Huda Osman4, Sarayut Tunmee5, Hideki Nakajima5, Triwikantoro1, Mochamad Zainuri1, Darminto1,*

    Journal of Renewable Materials, Vol.11, No.4, pp. 1823-1833, 2023, DOI:10.32604/jrm.2023.025026

    Abstract An rGO−like carbon compound has been synthesized from biomass, i.e., old coconut shell, by a carbonization process followed by heating at 400°C for 5 h. The nitrogen doping was achieved by adding the urea (CH4N2O) and stirring at 70°C for 14 h. The morphology and structure of the rGO-like carbon were investigated by electron microscopies and Raman spectroscopy. The presence of C-N functional groups was analyzed by Fourier transform infrared and synchrotron X-ray photoemission spectroscopy, while the particle and the specific capacitance were measured by particle sizer and cyclic voltammetry. The highest specific capacitance of 72.78 F/g is achieved by… More > Graphic Abstract

    N-Doped rGO-Like Carbon Prepared from Coconut Shell: Structure and Specific Capacitance

  • Open Access

    REVIEW

    Thermomechanical Energy Converters for Harvesting Thermal Energy: A Review

    Oleg P. Dimitriev*

    Journal of Renewable Materials, Vol.11, No.4, pp. 1555-1600, 2023, DOI:10.32604/jrm.2023.024772

    Abstract Thermal energy, i.e., the electromagnetic energy in the infrared range that originates from the direct solar radiation, outgoing terrestrial radiation, waste heat from combustion of fuels, heat-emitting electrical devices, decay of radioactive isotopes, organic putrefaction and fermentation, human body heat, and so on, constitutes a huge energy flux circulating on the earth surface. However, most energy converters designed for the conversion of electromagnetic energy into electricity, such as photovoltaic cells, are mainly focused on using a narrow part of the solar energy lying in the visible spectrum, while thermomechanical engines that are fueled by heat in the broad energy range… More > Graphic Abstract

    Thermomechanical Energy Converters for Harvesting Thermal Energy: A Review

  • Open Access

    ARTICLE

    Durability of Green Concrete in Severe Environment

    Yonggan Yang1,2,3,4, Zihao Kang1, Binggen Zhan1,3,*, Peng Gao1,3,*, Qijun Yu1, Yanlai Xiong4, Jingfeng Wang1,3, Yunsheng Zhang5

    Journal of Renewable Materials, Vol.11, No.4, pp. 1895-1910, 2023, DOI:10.32604/jrm.2023.025059

    Abstract In this paper, the effects of different mineral admixtures and sulfate solution types on the appearance, mass change rate, relative dynamic elastic modulus, and corrosion resistance coefficient of concrete were systematically studied. X-ray Diffraction (XRD), Mercury Intrusion Porosimetry (MIP), Scanning Electron Microscopy (SEM), and X-ray Computed Tomography (X-CT) were used to explore and analyze the changes in the microstructure and the corrosion products of concrete in the sulfate solution. The results show that the existence of magnesium ions accelerates concrete deterioration. There is a critical dosage of fly ash for magnesium sulfate resistance of concrete. The magnesium sulfate resistance of… More > Graphic Abstract

    Durability of Green Concrete in Severe Environment

Displaying 11-20 on page 2 of 16951. Per Page  

Share Link

WeChat scan