Implementation of the level set method for continuum mechanics based tumor growth models

Cosmina S. Hogea\(^1\), Bruce T. Murray\(^1\), and James A. Sethian\(^2,3\)

Abstract: A computational framework for simulating growth and transport in biological materials based on continuum models is proposed. The advantages of the finite difference methodology employed are generality and relative simplicity of implementation. The Cartesian mesh/level set method developed here provides a computational tool for the investigation of a host of transport-based tissue/tumor growth models, that are posed as free or moving boundary problems and may exhibit complicated boundary evolution including topological changes. The methodology is tested here on a widely studied “incompressible flow” type tumor growth model with a numerical implementation in two dimensions; comparisons with results obtained from a linear analysis of the model and with other recently published numerical solutions provide a quantitative assessment of the numerical solution methodology. The implementation has been structured such that extension to three-dimensional simulations is straightforward from an algorithmic perspective.

Keyword: Tumor Growth Modeling, Level Set Methods, Finite Differences, WENO Schemes

1 Introduction

Over the last thirty years, research in several disciplines has led to the development of mathematical models to simulate the growth and macroscopic behavior of solid malignant tumors (Adam (1997), Araujo and McElwain (2004)). A continuum-based model may be used to help predict the evolution of tumors in time and this knowledge may in turn help estimate the effect that various methods of treatment (e.g., chemotherapy, radiotherapy, laser radiation) would have on the tumor behavior as well as on the surrounding healthy tissue and, ultimately, on the host.

Malignant solid tumors generally are described as masses of tissue formed as a result of abnormal and excessive proliferation of mutant (atypical) cells, whose division has escaped the mechanisms that control normal cellular proliferation. This abnormal proliferation of atypical cells in time can lead to uncontrolled growth and eventual invasion into surrounding tissue. This invasion is local at first—causing primary tumors, but malignant cells have the ability of migrating through the blood vessels and/or the lymphatic system towards other parts of the body, giving rise to secondary tumors; this process is called metastasis and it is the one responsible for the host death.

There are different stages of a malignant tumor evolution; described roughly, the main stages are the cellular stage and the macroscopic stage. The cellular stage refers to the early stage of a tumor evolution, when tumor cells are not condensed yet in a macroscopically observable mass. The macroscopic stage corresponds to that phase of a tumor evolution when clusters of atypical (malignant) cells condense together into a quasi-spherical observable mass (nucleus); this stage is sub-divided into two subsequent phases—the avascular phase and the vascular phase. During the avascular phase, the tumor obtains nutrients via diffusion processes alone, with nutrients already existing in the environment. In the second phase, called the vascular phase, when the tumor grows more rapidly through what is called angiogenesis (i.e., the birth of new blood vessels), malignant tumor cells secrete chemicals that have the ability to diffuse into the surrounding healthy tissues and stimulate the growth of new capillary blood vessels; the newly born blood vessels penetrate into the tumor mass feeding it with nutrients and leading to a rapid growth of the tumor. Tumor growth occurs basically via two mechanisms: when

\(^1\)Department of Mechanical Engineering, Binghamton University, USA
\(^2\)Department of Mathematics and Lawrence Berkeley National Laboratory, University of California, Berkeley, USA
\(^3\)This author was supported in part by the Applied Mathematical Sciences subprogram of the Office of Energy Research, U.S. Department of Energy, under Contract Number DE-AC03-76SF00098, and the Division of Mathematical Sciences of the National Science Foundation
supplied with a sufficient amount of nutrient, malignant cells divide (cellular mitosis); when the density of malignant cells in a specific volume becomes too high, the cells are compressed by their neighbors, so they tend to move to less compressed areas—where they are allowed to continue the division process—and this process is repeated.

Due to the extremely complex nature of the biological systems underlying the behavior in tumors and due to the limited understanding of tumor growth mechanisms, developing useful models (mathematical, computational or both) is a difficult task. The two primary approaches in solid tumor growth modeling are via continuum mechanics (based on incompressible flow, elasticity, etc) and discrete approaches employing cellular automata (CA) or lattice-based models. For the macroscopic stage of tumor evolution, the continuum approach may offer the most generality. Providing all of the model parameters can be estimated, the advantage of a continuum model is that it provides a systematic means for evaluating the role played by individual physical mechanisms. However, the more complex the continuum model—the more difficult the computational simulations, since a continuum model will generally yield a nonlinear moving boundary problem.

The starting point for many continuum models is the pioneering work of Greenspan in the 1970’s (see Araujo and McElwain (2004) and references therein). In recent years a variety of macroscopic continuum models have been derived employing analogies with inorganic systems (theory of mixtures, multiphase flow: Byrne, King, and McElwain (2003), Byrne and Preziosi (2003)). While currently quite a few such complex models exist in the literature, computational simulations in arbitrary geometries and higher dimensions to further investigate and validate these models are still largely missing.

The goal of the present work is to introduce a general computational framework for obtaining multidimensional solutions to continuum-based models for numerically simulating tumor growth. The methodology is appropriate for complex models involving coupled nonlinear PDEs with moving boundaries in multiphase domains. A fixed Cartesian grid is used to discretize the field equations—which allows good flexibility in the numerical implementation—coupled with a level set method to capture the moving tumor boundary. Various level set implementations have been successfully employed in simulating a broad range of moving boundary problems in fluid mechanics, combustion, materials science and more. It seems natural to extend their application to moving boundary problems in biological applications. The recent book by Lappa (2004) addresses several computational aspects of modeling biological tissue growth.

The Greenspan type model investigated in Cristini, Lowengrub and Nie (2003) is considered to illustrate and test the feasibility of the computational method proposed. This model is appealing for computational testing purposes for two reasons: first, it is cast as two simple decoupled linear elliptic equations with constant coefficients, while the advance of the tumor boundary is governed by an equation involving only two model parameters; second, accurate, two-dimensional numerical simulations using a boundary integral method have been published in Cristini, Lowengrub and Nie (2003) and are available for comparison.

2 A simple mathematical model of tumor growth

The tumor growth model employed to develop the computational methodology is discussed in detail in Cristini, Lowengrub and Nie (2003), and is only briefly outlined here. Consider a tumor occupying a time-varying domain $D(t)$. The field variable $\sigma = \sigma(\vec{x}, t)$ represents the concentration of nutrient inside the tumor (e.g., oxygen). In this simplified model, it is assumed that the tumor is non-necrotic (no region comprised of dead cells) and that no other chemical species are considered. The nutrient concentration is governed by a diffusion equation. It is assumed that nutrient is supplied at a linear rate by existing blood vessels; nutrient is absorbed by the living tumor cells at a linear rate as well. Neither blood cells or tumor cells are explicitly considered in the model. Based on the assumption that the time scale necessary for the tumor to undergo significant changes in volume ($\sim$days) is typically much larger than the nutrient diffusion time scale ($\sim$minutes), the nutrient diffusion inside the tumor is considered quasi-steady. Thus, the continuum mass balance equation for the nutrient inside the domain occupied by the tumor yields the following steady diffusion equation for the nutrient concentration $\sigma = \sigma(\vec{x}, t)$:

$$0 = D_N \nabla^2 \sigma - \gamma_B (\sigma - \sigma_B) - \delta_N \sigma \quad \text{in } D(t)$$

where $D_N$ is the diffusion coefficient (constant), the term $-\gamma_B (\sigma - \sigma_B)$ models the blood-tissue nutrient supply rate...
Implementation of the level set method for continuum mechanics based tumor growth models

(source term, with \( \gamma_B \) uniform and \( \sigma_B > \sigma \), while the last term \( \delta_N \sigma (\delta_N \) uniform) represents the consumption of nutrient by the living tumor cells (sink term). Here, \( \sigma_B \) is the concentration of nutrient in the blood (assumed uniform). Further, the tumor is modeled as an incompressible fluid with a velocity field \( \vec{u} = \vec{u}(\vec{x}, t) \) obeying the continuity equation in \( D(t) \):

\[
\nabla \cdot \vec{u} = \gamma_T \sigma - \delta_T \text{ in } D(t)
\]

(2)

where the first term in the right hand side expression represents the tumor cell rate of proliferation (mitosis)—assumed a linear function of the nutrient, while the second term represents the tumor cell rate of death (apoptosis). Both \( \gamma_T \) and \( \delta_T \) in Eq.(2) are assumed uniform. The velocity field \( \vec{u} = \vec{u}(\vec{x}, t) \) is related to the pressure gradient using a relationship similar to Darcy’s law:

\[
\vec{u} = -w_T \nabla p \text{ in } D(t)
\]

(3)

where \( w_T \) represents the tumor cell mobility, assumed constant, and \( p = p(\vec{x}, t) \) is the fluid pressure inside the domain occupied by the tumor \( D(t) \). Combining Eqns. (2) and (3) yields:

\[
\nabla^2 p = -\frac{\gamma_T}{w_T} \sigma + \frac{\delta_T}{w_T} \text{ in } D(t)
\]

(4)

The coupled linear equations (1) and (4) represent the governing field equations for the model state variables \( \sigma = \sigma(\vec{x}, t) \) (the nutrient concentration inside the tumor) and \( p = p(\vec{x}, t) \) (the pressure inside the tumor).

It is assumed that the nutrient concentration at the tumor boundary is the nutrient concentration existent in the tissue outside the tumor—presumed uniform and denoted by \( \sigma_{out} \), i.e.,

\[
\sigma|_{\partial D(t)} = \sigma_{out}
\]

(5)

The pressure is assumed to satisfy the Young-Laplace relationship on the boundary:

\[
p|_{\partial D(t)} = \gamma \kappa
\]

(6)

where \( \gamma \) represents the surface tension (here corresponding to cell-cell adhesion forces), while \( \kappa \) is the local curvature. The normal velocity of the tumor boundary, \( V \), is the normal component of the fluid velocity at the boundary:

\[
V = \vec{u} |_{\partial D(t)} \cdot \vec{n}_{\partial D(t)} = -w_T \nabla p |_{\partial D(t)} \cdot \vec{n}_{\partial D(t)}
\]

(7)

where \( \vec{n}_{\partial D(t)} \) represents the unit outward normal to the tumor boundary \( \partial D(t) \).

Following Cristini, Lowengrub and Nie (2003), the model equations and variables are made dimensionless by introducing:

\[
L_D = \frac{D^4}{(\gamma_B + \delta_N)^2}
\]

\[
\lambda_R = \frac{w_T \gamma}{L_D}
\]

(8)

where \( L_D \) represents a diffusion-related length scale and \( \lambda_R \) represents a relaxation time scale. The following dimensionless variables are defined:

\[
\vec{x} = \frac{\vec{x}}{L_D} \text{ (dimensionless space)},
\]

\[
\vec{T} = t \lambda_R \text{ (dimensionless time)},
\]

\[
\bar{\sigma} = \frac{\sigma}{\sigma_{out}} \text{ (dimensionless nutrient concentration)},
\]

\[
\bar{p} = \frac{p L_D}{\gamma} \text{ (dimensionless pressure)}.
\]

The governing equations (1) and (4), the boundary conditions (5) and (6) and the equation of the moving boundary (7) become:

\[
\nabla^2 \bar{\sigma} - \bar{\sigma} + \frac{\gamma_B \sigma_B}{\sigma_{out} (\gamma_B + \delta_N)} = 0
\]

in \( \Omega = \Omega(\bar{T}) = D(\vec{x}, \vec{T}) \)

(9)

\[
\nabla^2 \bar{p} = -\frac{\gamma_T \sigma_{out}}{\lambda_R} \bar{\sigma} + \frac{\delta_T}{\lambda_R} \text{ in } \Omega = \Omega(\bar{T})
\]

(10)

\[
\bar{\sigma}|_{\partial \Omega} = 1
\]

(11)

\[
\bar{p}|_{\partial \Omega} = \kappa
\]

(12)

\[
\vec{V} = -\nabla \bar{p} |_{\partial \Omega} \cdot \vec{n}_{\partial \Omega}
\]

(13)

where in all the above dimensionless equations the derivatives are with respect to the dimensionless variables \( \vec{x} \) and \( \vec{T} \). Further, let

\[
\lambda_M = \gamma_T \sigma_{out}
\]

(14)

be the characteristic mitosis rate and define

\[
B = \frac{\sigma_B}{\sigma_{out}} \frac{\gamma_B}{\gamma_B + \delta_N}
\]

(15)

(a dimensionless parameter indicating the relative degree of the tumor vascularization).

Substituting Eq.(14) into Eq.(10) yields:

\[
\nabla^2 \bar{p} = -\frac{\lambda_M}{\lambda_R} \bar{\sigma} + \frac{\delta_T}{\lambda_R} \text{ in } \Omega = \Omega(\bar{T})
\]

(16)
while substituting Eq.(15) into Eq.(9) yields:

$$\nabla^2 \sigma - (\sigma - B) = 0 \text{ in } \Omega = \Omega(t)$$  \hspace{1cm} (17)

Further, if a new dimensionless nutrient “concentration” is defined as:

$$\Gamma = \frac{\sigma - B}{1 - B}$$  \hspace{1cm} (18)

then from Eqns.(17) and (11) the following boundary value problem is obtained for \(\Gamma\):

\[
\begin{align*}
\nabla^2 \Gamma - \Gamma &= 0 \text{ in } \Omega = \Omega(t) \\
\Gamma|_{\partial \Omega} &= 1
\end{align*}
\hspace{1cm} (19)
\]

where the “bar” notation in \(\Omega = \Omega(t)\) has been dropped for simplicity. Finally, the model parameters can be further reduced by introducing the following two dimensionless parameters:

\[
\begin{align*}
G &= \frac{\bar{M}}{B} (1 - B) \\
A &= \frac{\bar{M}}{2 - B}
\end{align*}
\hspace{1cm} (20)
\]

Using the above parameter definitions and Eq.(18), Eq.(16) can be written as follows:

$$\nabla^2 (\sigma + G \Gamma) = AG \text{ in } \Omega = \Omega(t)$$  \hspace{1cm} (21)

If a new dimensionless “pressure” is defined as:

$$P = \bar{p} - (1 - \Gamma) G - AG \frac{\bar{x} \cdot \bar{x}}{2d}$$  \hspace{1cm} (22)

where \(d\) represents the dimension of the domain occupied by the tumor (\(d = 1, 2\) or 3), then the following boundary value problem is obtained for \(P\):

\[
\begin{align*}
\nabla^2 P &= 0 \text{ in } \Omega = \Omega(t) \\
P|_{\partial \Omega} &= \kappa - AG \frac{|\bar{x}|}{2d}
\end{align*}
\hspace{1cm} (23)
\]

where the “bar” notation in \(\Omega = \Omega(t)\) and \(\bar{x}\) has been dropped for simplicity. Lastly, by substituting Eq.(22) into Eq.(13), the dimensionless normal “velocity” of the tumor boundary becomes (again, dropping the “bar” notation):

$$V = -\nabla P|_{\partial \Omega} \cdot \tilde{n}_{\partial \Omega} + G \nabla \Gamma|_{\partial \Omega} \cdot \tilde{n}_{\partial \Omega} - AG \frac{(\bar{n} \cdot \bar{x})|_{\partial \Omega}}{d}$$

The sets of equations (19) and (23) represent two decoupled linear elliptic boundary value problems for the unknowns \(\Gamma\) and \(P\) respectively; after they have been solved, the new location of the tumor boundary is found using the normal velocity given by Eq.(24).

Based on Eqns. (20) and (15), three regimes of tumor growth represented by the model are identified in terms of the parameters \(G\) and \(A\) as follows:

1. **Low vascularization regime**: \(G \geq 0, A > 0\).
2. **Moderate vascularization regime**: \(G \geq 0, A \leq 0\).
3. **High vascularization regime**: \(G < 0, A < 0\) or \(A > 0\).

These three regimes of growth are discussed in Cristini, Lowengrub and Nie (2003), based on the evolution of a radially symmetric tumor (both in 2D and in 3D). The authors have found that in the low vascularization regime, the tumor evolution is monotonic and always leads to a stationary radius, while in the moderate vascularization regime unbounded growth occurs regardless of the tumor initial radius, and finally, in the high vascularization regime unbounded growth or shrinkage may occur depending on the initial radius and the value of the parameter \(A\).

### 3 Level set formulation overview

As previously defined, let \(\Omega = \Omega(t)\) denote the domain occupied by the tumor. Let \(\Omega^\text{out} = \Omega^\text{out}(t)\) denote the region outside the tumor volume, and \(\Sigma = \Sigma(t) = \partial \Omega(t)\) (a curve in 2D and a surface in 3D, respectively) be the boundary of the tumor, separating the tumor and the outside tissue. This boundary evolves in time with a normal velocity \(V\) given by Eq. (24), and the problem is finding the location of the tumor boundary at later moments in time starting from a known location at the initial moment of time \(\Sigma_0 = \Sigma(t = 0)\). One way to do this is by employing the level set method introduced in a general context by Osher and Sethian (1988) and based in part on the theory and numerics of curve evolution developed in Sethian (1985, 1987). Additional references are contained in Sethian(1999).

The basic idea behind the level set method is to introduce an additional variable, denoted by:

$$\phi = \phi(x,t), \quad \bar{x} \in \Omega \cup \Sigma \cup \Omega^\text{out}, \quad t \in [0, \infty),$$

responsible for capturing the front \(\Sigma = \Sigma(t)\) in an implicit fashion at each moment in time:

$$\Sigma(t) = \{ \bar{x} \mid \phi(\bar{x},t) = 0 \}.$$

The function \( \varphi = \varphi(\vec{x}, t) \) is the level set function. First, the initial level set function value is set equal to the signed Euclidean distance function to the tumor boundary at the initial moment of time (taken negative inside the tumor and positive outside):

\[
\varphi(\vec{x}, 0) = \begin{cases} 
-\text{dist}(\vec{x}, \Sigma_0), & \vec{x} \in \Omega(t = 0) \\
0, & \vec{x} \in \Sigma_0 \\
dist(\vec{x}, \Sigma_0), & \vec{x} \in \Omega^{\text{out}}(t = 0)
\end{cases} \tag{25}
\]

At any moment in time, the location of the tumor boundary is given by the zero level set of the level set function. For a particle on the front with the path \( \vec{x} = \vec{x}(t) \), one has \( \varphi(\vec{x}(t), t) = 0 \).

The kinematics governing the motion of the boundary yields:

\[
\frac{d\varphi}{dt} = \frac{\partial \varphi}{\partial t} + \nabla \varphi(\vec{x}(t), t) \cdot \frac{d\vec{x}}{dt}(t) = 0, \; \forall t > 0
\]

The outward unit normal on the boundary is given in terms of the level set function by:

\[
\vec{n} = \frac{\nabla \varphi}{|\nabla \varphi|} \tag{26}
\]

Substituting (26) in the above equation leads to the evolution equation for the level set function (initial value formulation):

\[
\frac{\partial \varphi}{\partial t} + F |\nabla \varphi| = 0 \tag{27}
\]

where \( F = F(\vec{x}, t), \vec{x} \in \Omega \cup \Sigma \cup \Omega^{\text{out}}, \; t > 0 \) represents what is typically called an “extension velocity” field (i.e., defined everywhere, such that it always matches the given expression of the normal velocity \( V \) on the tumor boundary \( \Sigma \)):

\[
F(\vec{x}, t) \big|_{\vec{x} \in \Sigma(t)} = V(\vec{x}, t) \big|_{\vec{x} \in \Sigma(t)} \tag{28}
\]

Eq. (27) correctly moves the boundary with the prescribed normal velocity given by (24). In terms of the level set function, the mean curvature is expressed as:

\[
\kappa = \nabla \cdot \vec{n} = \nabla \cdot \left( \frac{\nabla \varphi}{|\nabla \varphi|} \right) = \frac{\varphi_{x} \varphi_{xx} - 2 \varphi_{x} \varphi_{y} \varphi_{xy} + \varphi_{y} \varphi_{yy}}{(\varphi_{x}^{2} + \varphi_{y}^{2})^{\frac{3}{2}}} \tag{29}
\]

As compared to an explicit front-tracking formulation, there are considerable advantages of the level set formulation:

- the domain occupied by the tumor at each moment of time (where the model equations (19), (23) must be solved for the unknowns \( \Gamma \) and \( \text{Prespecifyes} \) is apparent from the sign of the level set function (here taken negative);
- the geometric properties of the tumor boundary (normal and curvature) are readily available from (26) and (29) above;
- the same formulation holds regardless of the number of spatial dimensions (1, 2 or 3) and large topological changes (merging/breaking) can be naturally handled;
- level set implementations such as “the narrow band method” (Adalsteinsson and Sethian (1995)) or “the fast marching method” (see Sethian (1999)) are available that make the approach more computationally efficient.

On the other hand, some challenges arise when implementing the level set method:

- construction of the “extension velocity” field \( F \) in the level set equation (27) (generally, there is no natural choice for this field which is only defined on the interface itself);
- re-initialization of the level set function \( \varphi \) as a signed distance to the interface \( \Sigma(t) \) is needed in two instances: first, steep or flat gradients can develop that will in turn affect the estimation of the geometrical properties of the interface via Eqns. (26) and (29); second, if a “narrow band” type method is used, then the level set function \( \varphi \) must be re-initialized to a signed distance function each time the “narrow band” is rebuilt. Chopp was the first to recognize the need for re-initialization (Chopp (1993)).

### 3.1 Construction of the “extension velocity” field off the interface

One way of extending the normal velocity off the interface is extrapolation in the normal direction, following characteristics that flow outward from the interface, such that the velocity is constant on rays normal to the interface. This method, introduced by Malladi, Sethian and Vemuri (1995), works particularly well when no other
information is available except for what is known on the interface--as is the case here. At points adjacent to the interface, on each side, the “extension velocity” field \( F \) is first constructed by hand as follows: standing at a grid point adjacent to the interface, either inside the domain occupied by the tumor or outside, find the closest point on the interface whose velocity is given by Eq. (24) and copy its velocity. Construction of the extension velocity field in this manner has the advantage that it tends to preserve the signed distance function during the interface evolution in time. An alternative way to formulate this construction is as a pair of linear Hamilton-Jacobi equations (Osher and Fedkiw (2002)), in which the velocity values at the adjacent points are subsequently kept fixed and framed as boundary conditions for the following:

\[
\frac{\partial F}{\partial \tau} + \vec{n} \cdot \nabla F = 0 \text{ in } \Omega^\text{out}(t) \tag{30}
\]

\[
\frac{\partial F}{\partial \tau} - \vec{n} \cdot \nabla F = 0 \text{ in } \Omega(t) \tag{31}
\]

In the above equations (30) and (31), the local unit outward normal is defined by

\[
\vec{n} = \vec{n}(\vec{x}, t) = \frac{\nabla \phi(\vec{x}, t)}{|\nabla \phi(\vec{x}, t)|}
\tag{32}
\]

Here \( \tau \) designates a pseudo-time for the relaxation of the equations to steady-state at each moment of time \( t \). At steady-state, the corresponding solution \( F = F(\vec{x}, t) \) will be constant on rays normal to the interface.

An alternative way of computing extension velocities was developed by Adalsteinsson and Sethian (1999). In that work, a fast, Dijkstra-like technique is developed to systematically construct extension velocities by solving a static boundary value PDE without the use of time step restrictions and CFL constraints. In this formulation, the underlying ordering inherent in the flow of information is exploited to provide a highly efficient scheme. We refer the reader there for details about this approach.

### 3.2 Re-initialization of the level set function \( \phi \)

As discussed by Chopp (1993), in general, a procedure is needed to reset the level set function \( \phi \) as a signed distance function to the interface (in this case, the tumor boundary) from time to time. It is easy to see that the location of the interface \( \Sigma = \Sigma(t) = \{ \vec{x} \mid \phi(\vec{x}, t) = 0 \} \) in time is independent of the particular choice of the initial data \( \phi(\vec{x}, t = 0) \) as long as its zero level set function coincides with the initial (known) location of the interface: \( \Sigma_0 = \Sigma(t = 0) = \{ \vec{x} \mid \phi(\vec{x}, t = 0) = 0 \} \). Thus, re-initialization at some moment of time \( t \) can be regarded as the process of replacing the current level set function \( \phi(\vec{x}, t) \) by another function \( \phi^{\text{reinit}}(\vec{x}, t) \) that has the same zero contour but is better behaved; \( \phi^{\text{reinit}}(\vec{x}, t) \) becomes the new level set function to be used as initial data until the next re-initialization.

As was the case with building the extension velocity field, there is more than one way of re-initializing the level set function \( \phi \) to a signed distance function to the interface (see Sethian (1999) and Osher and Fedkiw (2002) for a discussion of various techniques). One very fast technique is to use finite difference Fast Marching Methods to rebuild the signed distance function (Sethian (1996)). Another approach (Peng, Merriman, Osher, Zhao and Kang (1999)) employs the following “re-initialization equation”:

\[
\begin{align*}
\frac{\partial \phi^{\text{reinit}}}{\partial \tau} + S(\phi_0^{\text{reinit}})|\nabla \phi^{\text{reinit}}| - 1 &= 0 \\
\phi_0^{\text{reinit}} &= \phi^{\text{reinit}}(\vec{x}, \tau = 0) = \phi(\vec{x}, t)
\end{align*}
\tag{33}
\]

where \( S(\phi_0^{\text{reinit}}) \) is a sign function taken as +1 in \( \Omega^\text{out}(t) \), -1 in \( \Omega(t) \) and 0 on the interface. Here again, \( \tau \) designates a pseudo-time for relaxing the equation to steady-state at a fixed real time \( t \). By solving Eq. (33) to steady-state, the resulting solution \( \phi_0^{\text{reinit}}(\vec{x}, t) \) will be a signed distance function to the interface \( \Sigma = \Sigma(t) \) at the particular time \( t \) in the model evolution. In practice, in order to avoid computational singularities, the “sign” function in Eq. (33) is “smeared out” as follows (Osher and Fedkiw (2002)):

\[
S(\phi_0^{\text{reinit}}) = \frac{\phi_0^{\text{reinit}}}{\sqrt{(\phi_0^{\text{reinit}})^2 + h^2}}
\tag{34}
\]

where \( h \) represents the size of the fixed Cartesian mesh chosen to discretize the problem. In Eq. (33), points near the interface outside the domain occupied by the tumor use the points inside the domain occupied by the tumor as boundary conditions and vice versa; an alternative version involves adding a gradient of the level set function to the normalization in the denominator. In both cases, when this circular loop of dependencies eventually balances out, a steady-state solution is reached. We note that use of the Dijkstra-like finite difference Fast Marching Method has no such circular dependency loop. This approach allows higher order stencils to be used in the
solution of the underlying partial differential equations. However, it causes the front to change position during reinitialization, and can lead to mass loss if performed often. These issues are discussed in detail in Sethian (2001). In the numerical experiments discussed in the following section, we shall discuss the effects of various order stencils on this iterative approach.

4 Level set implementation and numerical algorithm

The goal here was to develop a general computational framework for use in the numerical investigation of a broader range of tumor growth models. The level set method provides good generality for handling relatively simple or quite complex tumor boundary evolution. Finite differences were chosen to discretize the model equations because of the flexibility that they allow. Another objective was straightforward implementation from an algorithmic point of view. The resulting computational framework can be used for testing and investigating various existing models or new ones that are being developed. The ideas illustrated here for the tumor growth model presented in Section 2 have been successfully applied to obtain numerical simulations in two dimensions using a substantially more complex nonlinear tumor growth model (Hogea, Murray and Sethian (2005)).

The following solution formulation is targeted on generality and ease of implementation, but more optimal approaches for the particular problem investigated will be pointed out whenever appropriate. The numerical procedure for the present model solves the pair of Eqs. (19) and (23), and then updates the location of the tumor boundary using Eq.(24). The solution algorithm is outlined in the steps listed below:

1) It is assumed that the level set function \( \varphi(\vec{x}, t) \) is known at the current time level \( t \) and is equal to the signed distance function (prescribed initially, or as a result of re-initialization at later times). As a result, the current location of the interface is implicitly known. Following Adalsteinsson and Sethian (1995), a “narrow band” (tube) is built around the interface, with a user-prescribed width (the optimal width for a specific problem depends on the quantities involved, as well as the number of re-initializations employed). Since \( \varphi(\vec{x}, t) \) is assumed close to a signed distance function, the narrow band is defined by locating the points using the following criterion:

\[
\{ \vec{x} \mid |\varphi(\vec{x}, t)| < \text{width} \} = T.
\]

The grid points inside the tube and the grid points near the tube edge are marked distinctly.

2) With the location of the boundary implicitly captured by the current level set function \( \varphi(\vec{x}, t) \), Eqs. (19) and (23) are solved to obtain the numerical solution for \( \Gamma \) and \( P \) at the current time step \( t \).

3) With the values of \( \Gamma \) and \( P \) determined at the current time step \( t \), construct the “extension velocity” field \( F = F(\vec{x}, t) \) as described in Section 3.1, at points \( \vec{x} \) inside the narrow band tube \( T \).

4) With the extension velocity field computed at points inside the tube \( T \), the level set equation (27) is solved inside the tube to update the level set function at the next time step. The values of the level set function at grid points distinctly marked near the tube edge in Step 1 are frozen, as well as the values of the level set function outside the tube \( T \). The following conditions are monitored:

a) whether the newly updated tumor boundary (interface) approaches the tube edge to within a specified tolerance (if so, then the values kept frozen in Step 4, which serve as artificial numerical boundary conditions, will severely affect the actual location of the interface);

b) whether steep or flat gradients are developing in the newly updated level set function, particularly at points neighboring the interface.

Steps 2-4 are repeated until either situation a) or b) occurs; when this happens, the narrow band (tube) \( T \) must be rebuilt and the procedure begins with Step 1 again. Employing this Narrow Band Level Set Method is computationally very efficient (especially when constructing the extension velocity field); such an approach is well suited when only the evolution of the interface itself is of interest (i.e., the zero level set)–as it is the case for the tumor growth problem.

In what follows, the two-dimensional case is considered. The domain occupied by the tumor \( \Omega \) is embedded into a larger fixed, time-independent, computational domain \( D \), that is discretized using a uniform Cartesian mesh with \( \Delta x = \Delta y = h \). The region outside of the tumor (usually representing healthy tissue) is denoted by \( \Omega^{\text{out}} = D \setminus \Omega \).
The tumor boundary will often be referred to as the “interface” – separating the domain occupied by the tumor from the outside tissue.

Fig.1 is a schematic diagram of the tumor boundary located within the narrow band on the Cartesian grid. A “regular” grid point (either inside the domain occupied by the tumor or outside) shall denote a point on the fixed Cartesian grid that has no neighbors on the tumor boundary, in either the horizontal (x) direction or the vertical (y) direction, while an “irregular” grid point (on each side of the tumor boundary) corresponds to a point on the fixed Cartesian grid that is adjacent to the boundary, either horizontally or vertically. The discrete approximations of the geometric variables (i.e., the normal and the curvature) can be found in Appendix A.

### 4.1 Discretization of the governing equations

The procedure for solving the boundary value problem (23) to determine the dimensionless “pressure” field $P = P(\vec{x}, t)$ is described in detail below. The procedure for the dimensionless nutrient “concentration” $\Gamma = \Gamma(\vec{x}, t)$ is similar and in fact, much simpler, due to the type of boundary condition imposed. Recalling (23), the problem to be solved for $P = P(\vec{x}, t)$ is given by:

$$\nabla^2 P = 0 \quad in \quad \Omega = \Omega(t)$$ (35)

$$P|_{\partial \Omega} = \kappa - AG \frac{\vec{x} \bullet \vec{\nabla} \vec{x}}{4}$$ (36)

Suppose that the current time is $t_n = n\Delta t$, and the current level set function $\varphi_{t,i,j} = \varphi(x(i), y(j), t_n)$ is known at all Cartesian grid points $(i, j)$. Then the current domain occupied by the tumor is $\Omega_n = \Omega(t_n)$. Eq.(35) with the boundary condition Eq.(36) must be solved at points $(i, j) \in \Omega_n$ to obtain the discrete solution $P^n_{i,j} = P(x(i), y(j), t_n)$ at the current time step. The grid points $(i, j)$ marked as “irregular” on each side of the tumor boundary in Fig.1 are determined by checking to see if the level set function changes sign either in the horizontal direction, or in the vertical direction, or in both; if so, that means the interface cuts through the grid cell containing the current grid point, and that makes it an “irregular” grid point. Other grid points are marked as “regular”. At “regular” grid points $(i, j) \in \Omega_n$, the standard 5-points stencil is used to discretize the Laplace operator in Eq.(35)

$$\frac{P^n_{i+1,j} - 2P^n_{i,j} + P^n_{i-1,j}}{h^2} + \frac{P^n_{i,j+1} - 2P^n_{i,j} + P^n_{i,j-1}}{h^2} = 0$$ (37)

Consider now the case of an “irregular” horizontal grid point $(i, j) \in \Omega_n$, where, for instance, $\varphi^n_{i+1,j} < 0$ and $\varphi^n_{i+1,j} > 0$. Then there is an interface point in the horizontal direction, in between $x(i)$ and $x(i + 1)$, call it $x_b$.

By linear interpolation of the level set function, the value of $x_b$ can be determined as follows:

$$x_b - x(i) = -\left(\frac{\varphi^n_{i+1,j} - \varphi^n_{i,j}}{\varphi^n_{i+1,j} - \varphi^n_{i,j}}\right)h = \theta_i h \quad (0 < \theta_i < 1)$$ (38)

Next, a second-order interpolating polynomial $p(x)$ in the x-direction is formally constructed using $h, \theta_i, P(x_b, y(j), t_n), P^n_{i,j}, P^n_{i-1,j}$, respectively. That note $P(x_b, y(j), t_n)$ is computed from the boundary condition Eq.(36) applied at the boundary point $(x_b, y(j))$, where the curvature is estimated as described in Appendix A and $x_b$ is known from (38). Thus, with the expressions of the interpolated polynomial formally computed, the second derivative is approximated as:

$$\frac{\partial^2 P^n_{i,j}}{\partial x^2} \approx p''(x)|_{x=x(i)}$$ (39)

A similar procedure is used in the y-direction. Naturally, there will be “irregular” grid points that might have neighbors on the boundary both in the x- and y-direction. Finally, considering both “regular” grid points as well as “irregular” ones inside the domain occupied by the tumor at the current moment of time, the system of discrete equations that must be solved to determine the unknowns $\{P^n_{i,j}\} | (i, j) \in \Omega_n$ can be cast in the general form:

$$P^n_{i,j} = f_{i,j}(P^n_{i-1,j}, P^n_{i+1,j}, P^n_{i,j-1}, P^n_{i,j+1}), (i, j) \in \Omega_n$$ (40)

where

$$f_{i,j}(P^n_{i-1,j}, P^n_{i+1,j}, P^n_{i,j-1}, P^n_{i,j+1}) = a_{i,j} + b_{i,j} P^n_{i-1,j} + c_{i,j} P^n_{i+1,j} + d_{i,j} P^n_{i,j-1} + e_{i,j} P^n_{i,j+1}$$ (41)

A straightforward and general way of solved the system (47) for average mesh sizes is by the iterative Gauss-Seidel method. The use of a Gauss-Seidel method here has the advantage of generality and it only requires very modest memory storage. Numerical tests were performed to examine the optimal stopping criterion in the
Implementation of the level set method for continuum mechanics based tumor growth models

Figure 1: Schematic of the tumor boundary representation in the Cartesian grid, "narrow band" level set approach.

For the present calculations, for values $10^{-6} \leq tol \leq 10^{-12}$, no differences were observed in the converged solution of (40); therefore, the value $tol = 10^{-6}$ was used for all the solutions.

4.2 Numerical construction of the “extension velocity” field

As discussed in Section 3.1, it is necessary to construct an extension velocity in cases where the velocity is defined solely on the front. One approach is to use the finite difference, Dijkstra-like marching methodology introduced in Adalsteinsson and Sethian (1999); this has the advantage of avoiding all time-step constraints. It is an efficient technique which naturally makes use of the underlying ordering inherent in the characteristic flow of information. Here, we implement an alternative technique, and construct the extension velocity field $F = F(\vec{x}, t)$ at a particular moment of time $t$ (when the level set function $\varphi = \varphi(\vec{x}, t)$ and the model field variables $P = P(\vec{x}, t)$, $\Gamma = \Gamma(\vec{x}, t)$ are known) by solving the PDEs (30) and (31) to steady-state. First, at grid points adjacent to the interface on each side marked as “irregular” in Fig.1, the extension velocity field is constructed by hand. Two ways of doing this are described in Appendix B. A numerical estimate of the normal velocity is needed at points on the interface $\vec{x}_{\text{interface}}$ – whose expression is given by Eq. (24):

$$V(\vec{x}_{\text{interface}}, t) = -(\nabla P \cdot \vec{n})|_{\vec{x}_{\text{interface}}} + G(\nabla \Gamma \cdot \vec{n})|_{\vec{x}_{\text{interface}}} - \frac{\kappa(\vec{x}_{\text{interface}})}{2}$$

(42)

The local unit outward normal to the interface $\vec{n} = \vec{n}(\vec{x}_{\text{interface}}, t)$ in (42) is computed as described in Appendix A. Then, the normal derivatives in (42), both for $P$ and $\Gamma$, are approximated by using backward differencing in the normal direction; here, a second-order backward difference formula is employed (more explanations on this particular choice in Section 5 ahead):

$$(\nabla P \cdot \vec{n})|_{\vec{x}_{\text{interface}}} \approx \frac{3P(\vec{x}_{\text{interface}}, t) - 4P(\vec{x}_{\text{interface}}, -h\vec{n}, t) + P(\vec{x}_{\text{interface}}, -2h\vec{n}, t)}{2h}$$

(43)

where, according to the boundary condition (23) on $P$,

$$P(\vec{x}_{\text{interface}}, t) = \kappa(\vec{x}_{\text{interface}}, t) \frac{\vec{x}_{\text{interface}} \cdot \vec{x}_{\text{interface}}}{4}$$

(44)

and the curvature $\kappa(\vec{x}_{\text{interface}}, t)$ is computed as described in Appendix A.

The terms $P(\vec{x}_{\text{interface}} - h\vec{n}, t)$ and $P(\vec{x}_{\text{interface}} - 2h\vec{n}, t)$ in (43) above are estimated using bilinear interpolation from the known values of $P$ at the 4 neighboring corners.
on the fixed Cartesian grid at the current moment of time \( t \). Similarly for \( \Gamma \), where the value \( \Gamma(x_{\text{interface}}, t) = 1 \), according to the boundary condition in (19). Finally, Eqns. (30) and (31) respectively must be solved to steady-state, within the current tube \( T \), by using the previously estimated values of the extension velocity at irregular grid points as boundary conditions. Everywhere else inside the current tube the extension velocity field is initialized to 0.

Equations (30) and (31) are each a linear hyperbolic equation of the form:

\[
\frac{\partial F}{\partial \tau} + a(x, y) \frac{\partial F}{\partial x} + b(x, y) \frac{\partial F}{\partial y} = 0
\]

with coefficients \( a(x, y) \) and \( b(x, y) \) given. Here, \( \tau \) represents a pseudo-time that is distinct from the real time \( t \) (which is fixed for Eq.(45)). A regular, first-order upwind differencing scheme (LeVeque (1992), Thomas (1995)) is used to discretize Eq. (45):

\[
F_{i,j}^{k+1} = F_{i,j}^k - \Delta \tau \max(a_{i,j}, 0) D^{-x} F_{i,j}^k + \min(b_{i,j}, 0) D^{+x} F_{i,j}^k + \max(b_{i,j}, 0) D^{-y} F_{i,j}^k + \min(a_{i,j}, 0) D^{+y} F_{i,j}^k
\]

where

\[
D^{-x} F_{i,j}^k = \frac{F_{i,j}^k - F_{i-1,j}^k}{h}, \quad D^{+x} F_{i,j}^k = \frac{F_{i+1,j}^k - F_{i,j}^k}{h}
\]

\[
D^{-y} F_{i,j}^k = \frac{F_{i,j}^k - F_{i,j-1}^k}{h}, \quad D^{+y} F_{i,j}^k = \frac{F_{i,j+1}^k - F_{i,j}^k}{h}
\]

For this discretized hyperbolic equation, the time step, \( \Delta \tau \), must obey the CFL (Courant, Fredrich, Lewy) stability condition:

\[
\Delta \tau \max_{i,j} \left\{ \frac{|a_{i,j}|}{h} + \frac{|b_{i,j}|}{h} \right\} \leq 1
\]

(47)

Since in this case, \( |a_{i,j}| \leq 1 \) and \( |b_{i,j}| \leq 1 \), choosing a time step \( \Delta \tau \leq h/2 \) will automatically satisfy (47). In the numerical experiments presented in Section 5, \( \Delta \tau = h/5 \) and typically, this condition is enough to iterate equation (46) until:

\[
\max_{i,j} \left| F_{i,j}^{k+1} - F_{i,j}^k \right| < \frac{h^2}{2} \Delta \tau
\]

which is consistent with the order of the spatial approximation. The resulting solution \( \{F_{i,j}\} = \{F_{i,j}(t)\} \) is the extension velocity at the current real time \( t \).

4.3 Level set and re-initialization equation discretization

The level set equation (27) is discretized using a conservative scheme for nonlinear Hamilton-Jacobi equations with convex Hamiltonian Osher and Sethian (1988), Sethian (1999):

\[
\phi_{i,j}^{n+1} = \phi_{i,j}^n - \Delta \tau \left[ \max(F_{i,j}^n, 0) \nabla^+ + \min(F_{i,j}^n, 0) \nabla^- \right]
\]

where:

\[
\phi_{i,j}^n = \phi(x(i), y(j), n \Delta \tau)
\]

\[
F_{i,j}^n = F(x(i), y(j), n \Delta \tau)
\]

\[
V^+ = \left[ \max(D^{-x} \phi_{i,j}^n, 0) \right]^2 + \min(D^{+x} \phi_{i,j}^n, 0)^2 + \max(D^{-y} \phi_{i,j}^n, 0)^2 + \min(D^{+y} \phi_{i,j}^n, 0)^2 \right]^\frac{1}{2}
\]

\[
V^- = \left[ \max(D^{+x} \phi_{i,j}^n, 0)^2 + \min(D^{-x} \phi_{i,j}^n, 0)^2 + \right] \left[ \max(D^{+y} \phi_{i,j}^n, 0)^2 + \min(D^{-y} \phi_{i,j}^n, 0)^2 \right] \frac{1}{2}
\]

and \( D^{-x}(D^{-y}) \) stands for the backward differencing approximation of the first-order partial derivative in the \( x \) (\( y \)-direction, while \( D^{+x}(D^{+y}) \) stands for the forward differencing approximation. The above scheme is a first order (forward Euler) in time. The backward and forward difference approximations in Eq.(49) and Eq.(50) can be computed by employing first-order spatial discretization, or via higher-order schemes, such as HJ ENO or WENO (see Osher and Fedkiw (2002), Osher and Sethian (1988), Sethian (1999)). The time step in Eq.(48) must obey the CFL condition for stability:

\[
\Delta \tau \max_{i,j} \left| F_{i,j}^n \right| \leq \frac{h}{2}
\]

(51)

In practical applications, the level set motion generally tends to show much less sensitivity to temporal accuracy (once the time step is carefully chosen to ensure convergence), while the spatial accuracy seems to be far more important. Although, typically, higher order spatial schemes (like fifth order HJ WENO) are coupled with higher order schemes in time (like third order TVD RK), a first order forward Euler in time can often be safely
employed, thus significantly reducing the computational cost.

For the problem investigated here, numerical experiments have shown no visible sensitivity to reductions in the time-step by a factor of 10 or even 100 in a forward Euler method, once the time step is carefully chosen such that convergence occurs. The numerical simulations show notable sensitivity to spatial accuracy in the low vascularization regime, where the tumor evolution predicted by the model here investigated proves bounded but unstable; in the high vascularization regime (stable evolution) a first order spatial discretization and a fifth order WENO spatial discretization yield results almost indistinguishable when plotted.

The discrete level set Eq.(48) is only solved within the current narrow band tube \( T \); the values of the level set function at the grid points marked “near a tube edge” are kept frozen, as well as the grid points outside the current tube. More details on the narrow band implementation are given in Section 5.

The re-initialization Eq. (33) is discretized using the same conservative scheme for Hamilton-Jacobi equations as in Eq.(48) above (Peng, Merriman, Osher, Zhao and Kang (1999)):

\[
\phi_{ij}^{\text{reinit},k+1} = \phi_{ij}^{\text{reinit},k} - \Delta \tau \left[ \max(\nabla \phi_{ij}^{\text{reinit}}) (\nabla^+ - 1) + \min(\nabla \phi_{ij}^{\text{reinit}}) (\nabla^- - 1) \right] \tag{52}
\]

where:

\[
\phi_{ij}^{\text{reinit}} = \phi^{\text{reinit}}(x(i), y(j), k\Delta \tau)
\]

\[
S_{ij}^{\text{reinit}} = S(\phi^{\text{reinit}}(x(i), y(j), k\Delta \tau))
\]

\[
\nabla^+ = [\max(D^{-x} \phi_{ij}^{\text{reinit}}, 0)^2 + \min(D^{+x} \phi_{ij}^{\text{reinit}}, 0)^2 + \max(D^{-y} \phi_{ij}^{\text{reinit}}, 0)^2 + \min(D^{+y} \phi_{ij}^{\text{reinit}}, 0)^2]^{\frac{1}{2}}
\]

\[
\nabla^- = [\max(D^{+x} \phi_{ij}^{\text{reinit}}, 0)^2 + \min(D^{-x} \phi_{ij}^{\text{reinit}}, 0)^2 + \max(D^{+y} \phi_{ij}^{\text{reinit}}, 0)^2 + \min(D^{-y} \phi_{ij}^{\text{reinit}}, 0)^2]^{\frac{1}{2}}
\]

Whenever re-initialization is required, Eq. (52) is iterated to steady-state. If (34) is used for the smeared “sign” function \( S \), then \( S \) is evaluated only once in (52), using the initial data \( \phi_{ij}^{\text{reinit}}(0) = \phi^{\text{reinit}}(x(i), y(j), 0) \); on the other hand, if denominator normalization depending on the value of \( \phi \) itself is used, then \( S = S(\phi^{\text{reinit}}) \) must be updated continually at each iteration in (52). Both choices have been numerically tested for the current problem; no visible differences have been observed. The same comments made for the level set equation earlier in this section hold regarding the order of the temporal and spatial approximations in (52). If forward Euler in time and fifth-order discretization in space are used in the level set equation Eq.(48), then they are used also in the re-initialization equation (52) for consistency.

It is important to note that particularly for the unstable regime of the tumor growth, frequent use of re-initialization is avoided unless required. Re-initialization is used here jointly with the reconstruction of the “narrow band” (tube), and then, according to Step 1 in the algorithm where the level set function is reset to a signed distance function in the entire computational domain in order to correctly mark the grid points inside the new tube. Otherwise, if intermediate re-initializations are desired without re-building the tube, re-initialization can be limited to inside the current tube \( T \) only.

5 Numerical results

In order to test the solution procedures, a series of two-dimensional numerical simulations of tumor growth governed by the model introduced in Section 2 are presented, along with additional details of the solution implementation. The results are compared quantitatively to the linear theory and qualitatively to the boundary integral solutions presented in Cristini, Lowengrub and Nie (2003). For the model governed by equations (19), (23) and (24) – namely, decoupled linear elliptic equations with constant coefficients – the boundary integral method is an optimal choice from the point-of-view of accuracy and efficiency. The objective of the present work is to provide a general computational framework that may be used successfully for more complex tumor growth models (e.g., coupled parabolic equations, variable coefficients, different governing equations inside and outside the tumor domain, etc–see Hogea, Murray and Sethian (2005)), for which a boundary integral method is no longer applicable. Additionally, the proposed methodology can be extended to three-dimensional simulations in arbitrary geometries.

For the level set computations, the first issue to be addressed is the choice of the “narrow band” (tube) width. While in Adalsteinsson and Sethian (1995), Sethian (1999), a width \( 6h \leq width \leq 9h \) on each side of the interface has been suggested as generally optimal, the appropriate width for a specific problem must be cho-
sen depending on the quantities involved in the interface evolution in time (e.g., curvature), the order of the spatial discretization in the level set equation Eq.(48) and the number of re-initializations allowed. Since in the narrow band approach the level set function is updated only within the tube, its values at grid points near the edges of the tube boundary are frozen (as well as values outside the tube that are not used until the tube is rebuilt). The interface (identified as the zero level set) cannot be allowed to move all the way to the tube boundary, since the artificial boundary conditions there would adversely affect the motion of the zero level set as well as its geometric properties (i.e., normal, curvature). In [1], it has been suggested that for flows under curvature, a better approach is to estimate the derivatives in Eq.(48) at points near the edge of the tube boundary by linear extrapolation from within the tube, instead of freezing the values of the level set function. However, rather than employing this more sophisticated approach for the current implementation, the interface is always maintained at a safe distance from the boundary of the tube, even if this translates into a wider tube and more frequent reconstruction of the tube. If a fifth-order HJ WENO scheme is used to approximate the backward/forward difference operators in Eq.(49) and Eq.(50) (requiring 3 neighboring grid points in each up-wind direction), the width of the tube is taken to be 15h on each side of the interface. The interface is only allowed within at most 9 grid cells from the tube boundary (i.e., it is allowed to move at most 6 grid cells within the tube) before the tube is rebuilt. If a regular first-order scheme is used in Eq.(49) and Eq.(50), then the width of the tube is taken to be 9h on each side of the interface and the interface is as before, allowed to move at most 6 grid cells within the tube before the tube rebuilding procedure is triggered. All the results included here were obtained using the explicit Euler method in time for the level set equation Eq.(48). Even though the method is first-order in time and fifth-order in space, the truncation error in time and space remain reasonably balanced because of the stability restrictions on the size of the time step. In all the results included here, the mesh size will be indicated rather than the number of points on the fixed Cartesian grid. This is because for the same tube width, a slightly different size for the computational domain might be used for different mesh sizes (i.e., a slightly wider tube for larger mesh sizes, in order for the tube to remain safely embedded in the larger fixed Cartesian grid by the end of the simulation). Additionally, in the figures some of the computational domains have been rescaled for plotting purposes.

First, in Fig. 2, the validity of the “narrow band” approach is tested by direct comparison with the corresponding results obtained using a full matrix approach. The initial tumor boundary is a perturbed circle defined by the parametric equation:

\[ (x(\alpha), y(\alpha)) = \left(2.1 + 0.5 \cos(2\alpha)\right) \left(\cos(\alpha), \sin(\alpha)\right), \]

\( \alpha \in [0, 2\pi] \) (53)

The values of the dimensionless model parameters are \( G = 20, A = 0.5 \). According to the model assumptions in Section 2, the tumor is in the low vascularization regime. The mesh size and time step used are listed in the figure caption. Both approaches yield the same tumor evolution to within the truncation error. For both the “narrow band” and the full matrix approach, the fifth-order HJ WENO spatial discretization was used in the level set equation; moreover, the re-initialization procedure (only used in the “narrow band” approach) employs a similar fifth-order HJ WENO spatial discretization for Eq. (52). As described in Section 4, for the “narrow band” approach, the re-initialization procedure is always used jointly with the tube reconstruction.

In developing the solution procedure, it was important to understand the impact of the spatial scheme used for the level set solution. In Fig. 3, for the same initial tumor boundary, model parameters and mesh size as the previous case, the tumor boundary evolution at a specific time is shown for two solution methods. The initial tumor shape is shown as the lighter solid oval curve. At a scaled time of 2.5, the dashed curve corresponds to the tumor boundary computed using a first-order scheme for the level set equation Eq.(48) and the solid curve corresponds to the fifth-order HJ WENO. The narrow band approach was used in both cases. The first-order scheme was not able to properly capture the boundary evolution in the region where the curvature changed most rapidly. Unless otherwise specified the remaining results presented were calculated using the fifth-order HJ WENO scheme both for the level set and for the reinitialization equations.

A simple quantitative check on the solution procedure is provided by a comparison with the growth of angular per-
Implementation of the level set method for continuum mechanics based tumor growth models

Figure 2: Nonlinear tumor evolution in time for unstable growth in the low vascularization regime (G=20, A=0.5): top - full matrix approach WENO used for level set equation; bottom - narrow band approach WENO used for level set equation and re-initialization. Initial tumor boundary given by Eq. (53). Mesh size \( h = 0.18 \) and time step \( \Delta t = 0.001 \) for both cases.

Figure 3: Comparison of nonlinear tumor evolution in time obtained employing a first-order level set scheme vs. a WENO scheme; the solution obtained via the first-order scheme exhibits numerical dissipation. Initial tumor boundary given by Eq. (53), low vascularization regime (G=20, A=0.5). Mesh size \( h = 0.18 \) and time step \( \Delta t = 0.001 \)

turbations to a radially symmetric tumor boundary. The linear stability theory presented in Cristini, Lowengrub and Nie (2003) was employed in Mathematica to compute the predicted tumor boundary shape at early times. For the same initial perturbation shape and parameters used in Figs. 2 and 3, Fig. 4 shows the tumor boundary predicted by the linear analysis and the nonlinear solution calculated using the level set approach at three time levels. At each time level, the initial perturbed circular shape is shown as well. At the two earlier times shown, the nonlinear solution tracks the evolution predicted by the linear theory very well. Only at the latest time level shown, where the boundary has grown beyond the validity of the linear theory, does the nonlinear tumor boundary shape differ significantly from the predicted linear shape.

Fig. 5 shows in detail the time evolution of the tumor from the level set solution, again for the same parameters, but calculated using a finer mesh: \( h = 0.09 \). The same qualitative behavior in the tumor boundary evolu-
Figure 4: Comparison between the nonlinear solution obtained via the narrow band level set approach and the solution obtained using the linear analysis developed in Cristini, et al. (2003) for the low vascularization regime ($G=20, A=0.5$). Initial tumor boundary given by Eq. (53). Mesh size $h = 0.18$ and time step $\Delta t = 0.001$.

Figure 5: Nonlinear tumor evolution in time via the narrow band level set approach (WENO) for the low vascularization regime ($G=20, A=0.5$). Initial tumor boundary given by Eq. (53). Mesh size $h = 0.09$ and time step $\Delta t = 0.00025$.

Again, the results were obtained by using a “narrow band” approach, with a fifth-order HJ WENO spatial scheme both in the level set equation Eq.(48) and the re-initialization equation (52); the mesh size is $h = 0.09$. The initial asymmetric tumor boundary is given by:

\[
(x(\alpha), y(\alpha)) = (2 + 0.24 \cos(2\alpha) + 0.2 \sin(2\alpha) + 0.12 \cos(3\alpha) + 0.1 \sin(3\alpha) + 0.08 \cos(5\alpha) + 0.14 \sin(6\alpha))
\]

\[
(\cos(\alpha), \sin(\alpha)), \quad \alpha \in [0, 2\pi]
\]  

(54)

The results show good qualitative agreement with the corresponding results obtained in Cristini, Lowengrub and Nie (2003) using a boundary integral method and the identical asymmetric, initial perturbation. Similarly to the results in Cristini, Lowengrub and Nie (2003), Fig. 6 shows modes 2 to 6 becoming unstable as the tumor continues to grow in time, exhibiting the same tendency to form lobes – asymmetric in this case – that will again tend to connect and encapsulate healthy tissue.

Up to this point, all of the cases used to test the level set solution procedure have been in the low vascularization regime of the model. Figure 7 shows two sets of results obtained in the high vascularization regime, for a choice of the model parameters $G = -5, A = 0.2$, and the initial
Figure 6: Nonlinear tumor evolution in time for the low vascularization regime (G=20, A=0.5) via the narrow band level set approach (WENO scheme). Initial tumor boundary given by Eq. (55). Mesh size $h = 0.09$ and time step $\Delta t = 0.00025$.

A "narrow band" approach was used with the two different spatial schemes again evaluated for obtaining the tumor boundary evolution. The results shown in the top part of the figure were obtained using a first-order scheme for both the level set equation and the re-initialization equation; on the bottom part of the figure a fifth-order HJ WENO scheme was used for both equations. In both cases, the mesh size is $h = 0.05$. In this case, there are no notable differences between the two sets of results (unlike the unstable growth case in the low vascularization regime depicted in Figs. 2 and 3). It is important to note that similar comparisons using courser meshes ($h = 0.1$ and $h = 0.2$) for this case showed no notable differences between results obtained via the two different spatial discretization methods. Also, comparisons against the full matrix approach at a mesh size of $h = 0.1$ were in agreement with the "narrow band" approach. The choice of the model parameters, $G = -5, A = 0.2$, here corresponds to a scenario where cell apoptosis rate is higher than cell mitosis rate – which in this model leads to tumor shrinkage and eventual disappearance. As it can be seen in Fig. 7, the shrinkage occurs in a stable fashion (in this scenario, the initially perturbed tumor boundary quickly evolves into a shrinking circle).

The results presented in Fig. 8 show the tumor evolution in time in the high vascularization regime as well, corresponding to a scenario where the mitosis rate is higher than apoptosis rate. The simulation starts from the same initial tumor shape used for the previous case, Eq. (55). In Fig. 8, the model parameters, $G = -5, A = 0.8$, were used. In this case stable, unbounded growth occurs (in this scenario, the initially perturbed tumor very soon evolves into an expanding circle). The results shown in both Figs. 7 and 8 show very good agreement with results presented in Cristini, Lowengrub and Nie (2003) obtained via the boundary integral method.

Finally, Figs. 9, 10 and 11 demonstrate that the proposed methodology is able to readily capture topological changes (e.g., tumor merging and breaking – which can occur in tumor growth) without any additional computational methodology. As pointed out in Section 3 above, the level set approach provides an ideal framework for simulating such topological changes.

Additional quantitative information regarding the solution procedure was obtained from a systematic evaluation of the order of spatial accuracy of the overall solution procedure. A mesh refinement analysis was conducted for two cases: one – in the low vascularization regime with model parameters $G = 20, A = 0.5$ and initial tumor boundary given by Eq. (54); two – in the high vascularization regime with $G = -5, A = 0.2$ and the initial tumor boundary given by Eq. (55). In both cases, the results were obtained using the narrow band approach with the fifth-order HJ WENO in the level set equation and in the re-initialization equation.

As described in Section 4.2, in computing the normal velocity of the tumor interface via Eq. (42), a second-order backward difference approximation (43) in the normal direction is employed. In theory, since the field variables $P$ and $\Gamma$ are determined with second-order accuracy, then the numerical value of the normal velocity of the interface can only be first-order accurate in this approach – regardless of the order of the backward differencing scheme used to approximate the normal derivatives in (4.23). In practice, numerical tests have shown that us-
Figure 7: Nonlinear tumor evolution in time using the narrow band level set approach for parameters in the high vascularization regime ($G=-5$, $A=0.2$). Initial tumor boundary shrinks in time. Top: first-order scheme for both the level set and re-initialization; Bottom: WENO scheme used for both. Initial tumor boundary given by Eq. (55). Mesh size $h = 0.05$ and time step $\Delta t = 0.00005$.

Figure 8: Nonlinear tumor evolution for unbounded growth obtained via the level set approach in the high vascularization regime ($G=-5$, $A=0.8$). Initial tumor boundary given by Eq. (55).

Using first-order backward differencing to approximate the terms $(\nabla P \cdot \vec{n})_{\text{interface}}$ and $(\nabla \Gamma \cdot \vec{n})_{\text{interface}}$ in (42) leads to considerably slower motion than when a second-order approximation is used. Further comparison of the tumor evolution in time using a second-order approximation and a third-order approximation showed no visible difference. Therefore, the second-order approximation (43) was chosen for the implementation here. A second related aspect must be noted here as well: according to the observations in the precedent paragraph, the numerical treatment of the term $(\nabla \Gamma \cdot \vec{n})_{\text{interface}}$ is first-order accurate; thus, the magnitude of the model parameter $G$ that multiplies this term in (42) is expected to have an important impact on the tumor evolution in time. This will be clearly shown in the mesh refinement analysis below.

Fig. 12 shows the evolution of the tumor boundary at three different moments of time computed using three different mesh sizes: $h = 0.36$, $h = 0.18$ and $h = 0.09$ for $G = 20$, $A = 0.5$ and the initial tumor boundary given by Eq. (54). Figure 13 shows the evolution of the tumor at three different moments of time computed using three different mesh sizes: $h = 0.4$, $h = 0.2$ and $h = 0.1$ for $G = -5$, $A = 0.2$ and the initial tumor boundary given...
Implementation of the level set method for continuum mechanics based tumor growth models

by Eq. (55). By comparison, it is very clear that for the case with the larger magnitude of $G$, the tumor evolution in time is much more sensitive to the mesh size than the smaller $G$ case. The mesh sizes were chosen to allow for two levels of refinement, starting with a relatively coarse mesh. Since, ideally, the methodology developed here is designed for implementation on moderately sized, standalone computing platforms, coarser meshes were used to evaluate the solution behavior and determine whether the results show the correct qualitative trends.

Figure 9: Three tumor clusters, initially separated, in the low vascularization regime with $G=20$, $A=0.5$. Subsequent merging and complete encapsulation of healthy adjacent tissue is illustrated.

The final issue addressed is the overall accuracy of the method here employed. Once the boundary starts to move, it becomes difficult to perform a quantitative convergence analysis on the field variables $\{P_{ij}\}_{i,j \in \Omega}$ and $\{\Gamma_{ij}\}_{i,j \in \Omega}$ in the vicinity of the moving boundary at a particular moment of time $t = t_n$, since grid points might lie on different sides of the boundary for different mesh sizes. Instead, the accuracy of the tumor boundary location in time can be quantitatively estimated. The level set method reconstructs the interface at every moment of time as a piecewise linear manifold; suppose that the Cartesian mesh size is doubled twice and denote by $\{x_{interface,k}^1\}_{k = 1}^{N_1}$, $\{x_{interface,k}^2\}_{k = 1}^{N_2}$, and $\{x_{interface,k}^4\}_{k = 1}^{N_4}$ the collection of interface points

Figure 10: Same three tumor clusters initially separated as in Fig. 9, in the high vascularization regime with $G=-5$, $A=1.0$. Merging followed by rapid quasi-uniform expansion observed.

Figure 11: A hypothetically “pinched-off” tumor in the high vascularization regime with $G=-5$, $A=1.0$. Breaking of the tumor into two separate lobes occurs instantaneously. Individual expansion is followed by subsequent merging and rapid quasi-uniform expansion.
and move clockwise along each polygonal line with a step $s_1 = \frac{L_1}{N_1}$, $s_2 = \frac{L_2}{N_2}$ and $s_4 = \frac{L_4}{N_4}$; mark the newly determined points on each polygonal line $L_1$, $L_2$ and $L_4$, yielding $\{\vec{X}_{\text{interface},k}^{n,1}\} |_{k=1,N}$, $\{\vec{X}_{\text{interface},k}^{n,2}\} |_{k=1,N}$ and $\{\vec{X}_{\text{interface},k}^{n,4}\} |_{k=1,N}$.

Since no analytic solution is available, the errors are computed with respect to the numerical solution corresponding to the finest mesh $\{\vec{X}_{\text{interface},k}^{n,4}\} |_{k=1,N}$; following Hou, Li, Osher and Zhao (1997), LeVeque and Li (1997), the error at time $t = t_n$ is defined as the largest Euclidean distance of the corresponding points of the two computed interfaces:

$$
e_{4,1} = \max_{k=1,N} |\vec{X}_{\text{interface},k}^{n,1} - \vec{X}_{\text{interface},k}^{n,4}|$$ \hspace{1cm} (56)

$$
e_{4,2} = \max_{k=1,N} |\vec{X}_{\text{interface},k}^{n,2} - \vec{X}_{\text{interface},k}^{n,4}|$$ \hspace{1cm} (57)

A ratio $e_{4,1} / e_{4,2}$ between 4 and 5 typically indicates second-order spatial accuracy, while a ratio between 2 and 3 typically indicates first-order spatial accuracy (Hou, Li, Osher and Zhao (1997), LeVeque and Li (1997)).

The quantitative errors resulting from the mesh refinement analysis in Fig. 9 and Fig. 10 are recorded in Table 1 and Table 2, respectively. According to these values, the tumor boundary location using the fixed Cartesian mesh, "narrow band" level set approach developed here is indeed found with first-order spatial accuracy along its evolution in time. Moreover, the absolute errors are confirmed much larger for the case $G = 20$ than for the case with $G = -5$.

6 Conclusions

A well-established, continuum-based tumor growth model was used here for testing the implementation of the level set approach for simulating tumor evolution. The model was chosen because of the availability of published results for comparison. A rather detailed description of the level set implementation is provided for the purpose of enabling the use of the methodology for a variety of tumor growth models. In the present model, there are no anisotropies included and the interaction of the tumor with its surroundings is incorporated only in simplistic manner.
As is well established (Folkman (1976)), tumor vascula-
larization occurs through tumor-induced angiogenesis—a process during which the tumor living cells release a
chemical TAF (tumor angiogenic factor). The TAF dif-
fuses into the healthy surrounding tissue and stimulates
the capillary network existent nearby outside the tumor—
thus leading to formation of new blood vessels through
accumulation of newly born endothelial cells; the new
capillaries move towards the source of angiogenic factor
leading to tumor vascularization. These crucial mecha-
nisms associated with the angiogenesis phenomena are
not accounted for in this simplified model.

One of the advantages of the computational framework
described here and illustrated in the context of a simpli-
fied tumor growth model is its potential applicability to
a host of tumor growth models (Byrne, King and McEl-
wain (2003), Byrne and Preziosi (2003)); recently it has
been used successfully to generate numerical simulations
for a complex multi-cell model centered on the angiogen-
esis phenomena (Hogea, Murray and Sethian (2005)).

Another advantage comes from the fact that the same
exact computational framework is readily adaptable to
three-dimensional calculations from an algorithmic point
of view. All the numerical schemes involved extend to
the three-dimensional case in a straightforward manner—
often translating to simply adding one more dimension
to the arrays involved. Moreover, the level set method in
the narrow band implementation has the ability of nat-
urally capturing potential large topological changes in
the tumor boundary evolution in time at reduced com-
putational expense, while automatically providing infor-
mation about the local geometric properties. As already
mentioned, this proves to be very important in complex
tumor growth models where different biological phenom-
ena may occur inside the tumor and outside in the healthy
surrounding tissue. Our full three dimensional imple-
mentation makes use of efficient Dijkstra-like techniques
for reinitializing and constructing extension velocities, as
well as new techniques for accurate sub-grid interpolations;
we shall report on this work elsewhere.

References:

118, pp. 269-277.

Adalsteinsson D.; Sethian J.A. (1997): The fast con-
struction of extension velocities in level set methods. J.

Adam J. (1997): General aspects of modeling tumor
growth and immune response. In: A Survey of Models
on Tumor Immune Systems Dynamics, J. Adam and N.

Study of Tumor Growth: The Contribution of Mathemat-
1091.


Chen S.; Merriman B.; Osher S.; Smerkea P. (1997):


### Table 1:

<table>
<thead>
<tr>
<th>Time</th>
<th>$e_{4,1}^n$</th>
<th>$e_{4,2}^n$</th>
<th>$C_{4,1}/C_{4,2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t=0.75$</td>
<td>0.8725</td>
<td>0.1674</td>
<td>5.2</td>
</tr>
<tr>
<td>$t=1.5$</td>
<td>1.6117</td>
<td>0.5659</td>
<td>2.8747</td>
</tr>
<tr>
<td>$t=2.0$</td>
<td>2.6363</td>
<td>1.2077</td>
<td>2.1827</td>
</tr>
</tbody>
</table>

### Table 2:

<table>
<thead>
<tr>
<th>Time</th>
<th>$e_{4,1}^n$</th>
<th>$e_{4,2}^n$</th>
<th>$C_{4,1}/C_{4,2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t=0.4$</td>
<td>0.1165</td>
<td>0.0389</td>
<td>2.9961</td>
</tr>
<tr>
<td>$t=0.8$</td>
<td>0.1357</td>
<td>0.0388</td>
<td>3.4927</td>
</tr>
</tbody>
</table>
Appendix A: Approximation of the curvature

In terms of the level set function, the curvature (of the zero level set, as well as of any other level set) is given by

$$\kappa = \nabla \cdot \left( \frac{\nabla \phi}{|\nabla \phi|} \right) = \frac{\phi_{xx} \phi_{yy}^2 - 2 \phi_x \phi_y \phi_{xy} + \phi_{yy} \phi_{xx}^2}{(\phi_{xx}^2 + \phi_{yy}^2)^{3/2}}.$$

For the numerical solution procedure, at a grid point \((i, j)\), the corresponding approximation to the curvature \(\kappa_{i,j}\) is obtained by using central differencing in all of the above terms.

If the level set function \(\phi\) remains smooth enough in a neighborhood of the interface, then the curvature at a point on the interface is obtained by bilinear interpolation from the values of the curvature computed at the 4 neighboring nodes on the fixed Cartesian grid (i.e., the
Implementation of the level set method for continuum mechanics based tumor growth models

4 corners of the fixed grid cell where the interface point lies).

Appendix A.2 Approximation of the normal

The local unit outward normal (to the zero level set (i.e., the interface), as well as to all the other level sets) is given by the formula:

\[ \bar{n} = \frac{\nabla \varphi}{|\nabla \varphi|} = \left( \frac{\varphi_x, \varphi_y}{\sqrt{\varphi_x^2 + \varphi_y^2}} \right) \]

Here the construction of the approximate normal described in [23] is followed, which takes into account the possibility for the normal to undergo a jump at corners. First, at a grid point \((i, j)\), let:

\[
\bar{n}_{i,j} = \frac{(D_{i,j}^{+x}, D_{i,j}^{+y})}{(D_{i,j}^{+x})^2 + (D_{i,j}^{+y})^2} + \frac{(D_{i,j}^{-x}, D_{i,j}^{-y})}{(D_{i,j}^{-x})^2 + (D_{i,j}^{-y})^2}
\]

where:

\[
D_{i,j}^{+x} = \frac{\Phi_{i+1,j} - \Phi_{i,j}}{h}, \quad D_{i,j}^{-x} = \frac{\Phi_{i,j} - \Phi_{i-1,j}}{h}
\]

\[
D_{i,j}^{+y} = \frac{\Phi_{i,j+1} - \Phi_{i,j}}{h}, \quad D_{i,j}^{-y} = \frac{\Phi_{i,j} - \Phi_{i,j-1}}{h}
\]

Then the approximate local unit outward normal at the grid point \((i, j)\) is computed as:

\[
\bar{n}_{i,j} = \frac{\bar{n}_{i,j}}{|\bar{n}_{i,j}|}
\]

Again, as in the case of the curvature, if the level set function \(\varphi\) remains smooth enough in a neighborhood of the interface, then the local unit outward normal at a point on the interface is obtained by bilinear interpolation from the values of the local unit outward normal computed at the four neighboring nodes on the fixed Cartesian grid.

Appendix B:

At grid points adjacent to the interface on each side marked as “irregular” in Fig. 1, the extension velocity field is constructed by hand. There are two means of implementation:

I. Let \(\bar{x} = (x(i), y(j))\) denote the position of the irregular grid point \((i, j)\) (on either side of the interface); find its projection (i.e., the closest point) on the interface \(x_{\text{interface}}\) by moving along the unit steepest direction:

\[
\bar{x}_{\text{interface}} = \bar{x} + \alpha \frac{\nabla \varphi(\bar{x}, t)}{|\nabla \varphi(\bar{x}, t)|}
\]

where \(\alpha\) is a real number (positive or negative) to be determined (\(|\alpha| \leq h\)).

The level set function on the interface is 0:

\[
0 = \varphi(\bar{x}_{\text{interface}}) = \varphi(\bar{x} + \alpha \frac{\nabla \varphi(\bar{x}, t)}{|\nabla \varphi(\bar{x}, t)|})
\]

By employing a Taylor series expansion on the right hand side, if the first two terms are kept, then a second order accurate location of the projection on the interface is yielded by \(\alpha = -\frac{\varphi(\bar{x})}{\nabla \varphi(\bar{x})}\).

If a highly accurate location of the projection is desired, then the first three terms in the above Taylor expansion can be kept and the resulting quadratic algebraic equation is solved for the unknown \(\alpha\).

The extension velocity field at the irregular grid point \(\bar{x} = (x(i), y(j))\) is obtained by copying the normal velocity of \(x_{\text{interface}}\) which is prescribed by Eq. (24):

\[
F_{i,j} = F_{i,j}(t) = F(\bar{x}, t) = F(\bar{x}_{\text{interface}}, t) = V(\bar{x}_{\text{interface}}, t)
\]

The advantage of this projection method is its computational efficiency; the potential disadvantage is that if higher order derivatives of the level set function \(\varphi(\bar{x}, t)\) are involved, this might require usage of the reinitialization procedure more often.

II. A second approach is inspired by the initialization stage of the “Fast Marching Method” described in Sethian (1999). It has the advantage that it is a purely geometric construction, which does not involve the use of level set function derivatives. Instead, the intersection of the interface with the fixed Cartesian grid lines is required; this is easily obtained from the values of the level set function \(\varphi\) by interpolation. The approximate Euclidean distance from the position of an irregular point \((i, j)\) to the front is found purely geometrically; up to a rotation, there are 5 geometrically distinct cases that need to be considered for the neighborhood of an irregular grid point. Thus, the approximate closest point (not found here explicitly) on the interface in this case would
lie on a segment of line that is part of the interface reconstructed as a piecewise linear manifold; its normal velocity is obtained by linear interpolation from the values of the normal velocities at the 2 segment ends. As in the previous case, the extension velocity field at the irregular grid point \( \vec{x} = (x(i), y(j)) \) is obtained by copying the normal velocity of the closest point on the interface.