Rayleigh-Marangoni Instability of Binary Fluids with Small Lewis Number and Nano-Fluids in the Presence of the Soret Effect
A. Podolny;,; A. Nepomnyashchy; and A. Oron;

doi:10.3970/fdmp.2010.006.013
Source FDMP: Fluid Dynamics & Materials Processing, Vol. 6, No. 1, pp. 13-40, 2010
Download Full length paper in PDF format. Size = 745,196 bytes
Keywords nanofluids, Marangoni convection, Rayleigh convection, Soret effect
Abstract A general model for two-component transport phenomena applicable for both nanofluids and binary solutions is formulated. We investigate a combined long-wave Marangoni and Rayleigh instability of a quiescent state of a binary (nano-) liquid layer with a non-deformable free surface. The layer is heated from below or from above. The concentration gradient is induced due to the Soret effect. A typical behavior of monotonic and oscillatory instability boundaries is examined in the limit of asymptotically small Lewis numbers and poorly conducting boundaries in the two important long-wave domains k~Bi1/2and k~Bi1/4.
PDF download PDF