Home / Journals / JIMH / Vol.4, No.1, 2026
Special Issues
  • Open AccessOpen Access

    ARTICLE

    CardioForest: An Explainable Ensemble Learning Model for Automatic Wide QRS Complex Tachycardia Diagnosis from ECG

    Vaskar Chakma1,#, Xiaolin Ju1,#, Heling Cao2, Xue Feng3, Xiaodong Ji3, Haiyan Pan3,*, Gao Zhan1,*
    Journal of Intelligent Medicine and Healthcare, Vol.4, pp. 37-86, 2026, DOI:10.32604/jimh.2026.075201 - 23 January 2026
    Abstract Wide QRS Complex Tachycardia (WCT) is a life-threatening cardiac arrhythmia requiring rapid and accurate diagnosis. Traditional manual ECG interpretation is time-consuming and subject to inter-observer variability, while existing AI models often lack the clinical interpretability necessary for trusted deployment in emergency settings. We developed CardioForest, an optimized Random Forest ensemble model, for automated WCT detection from 12-lead ECG signals. The model was trained, tested, and validated using 10-fold cross-validation on 800,000 ten-second-long 12-lead Electrocardiogram (ECG) recordings from the MIMIC-IV dataset (15.46% WCT prevalence), with comparative evaluation against XGBoost, LightGBM, and Gradient Boosting models. Performance was… More >

  • Open AccessOpen Access

    ARTICLE

    Machine Learning Models for Predicting Smoking-Related Health Decline and Disease Risk

    Vaskar Chakma1,*, Md Jaheid Hasan Nerab1, Abdur Rouf1, Abu Sayed2, Hossem Md Saim3, Md. Nournabi Khan3
    Journal of Intelligent Medicine and Healthcare, Vol.4, pp. 1-35, 2026, DOI:10.32604/jimh.2026.074347 - 23 January 2026
    Abstract Smoking continues to be a major preventable cause of death worldwide, affecting millions through damage to the heart, metabolism, liver, and kidneys. However, current medical screening methods often miss the early warning signs of smoking-related health problems, leading to late-stage diagnoses when treatment options become limited. This study presents a systematic comparative evaluation of machine learning approaches for smoking-related health risk assessment, emphasizing clinical interpretability and practical deployment over algorithmic innovation. We analyzed health screening data from 55,691 individuals, examining various health indicators including body measurements, blood tests, and demographic information. We tested three advanced… More >

Per Page:

Share Link