Open Access iconOpen Access

ARTICLE

crossmark

Analysis of differentially expressed genes in Verruca vulgaris vs. adjacent normal skin by RNA-sequencing

QINGQING GUO1,2, JIAYUE QI1,2, XIAOQIANG LIANG2, ZIGANG ZHAO2, JIA BAI2, FANG XIE2,#,*, CHENGXIN LI1,2,#,*

1 School of Medicine, Nankai University, Tianjin, 300071, China
2 Department of Dermatology, First Medical Center of Chinese People’s Liberation Army General Hospital, Beijing, 100853, China

* Corresponding Authors: FANG XIE. Email: email; CHENGXIN LI. Email: email
# These authors contributed equally to this work

BIOCELL 2023, 47(11), 2435-2443. https://doi.org/10.32604/biocell.2023.043126

Abstract

Introduction: Verruca vulgaris is one of the most common low-risk HPV infections and is characterized by excessive proliferation of keratinocytes. Currently, very little genetic information is available regarding verruca vulgaris in the Chinese population. This study aimed to obtain comprehensive transcript information of verruca vulgaris by RNA sequencing. Methods: High-throughput sequencing was performed on three fresh verruca vulgaris samples and adjacent normal skin on the Illumina sequencing platform. The transcriptomes were analyzed using bioinformatics and the differentially expressed genes (DEGs) were verified by immunohistochemistry. Verruca vulgaris exhibited a unique molecular signature. Results: In total, 1,643 DEGs were identified in verruca vulgaris compared to normal skin. The functions of the DEGs were studies by Gene Ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, DEGs Reactome analysis, disease annotation function, and STRING protein-protein interaction (PPI) network analysis. The results revealed 595 GO terms associated with the cell cycle, signal transduction, immune system, signaling molecules, and interaction. The Reactome analysis revealed enrichment in reversible hydration of carbon dioxide and BMP signaling, while the disease annotation function revealed that the enriched DEGs are involved in keratosis disorders. The STRING PPI network showed that the edges with the highest density mainly included the 2′–5′ oligoadenylate synthase (OAS) family-related proteins. Furthermore, the M-code analysis found ISG15, IRF7, and OASL were scored as significant modules and their high expression compared to the control was verified by immunohistochemistry. Conclusion: These findings contribute to the genetic information of verruca vulgaris in the Chinese population, revealing that interferon-stimulated genes may play essential roles in verruca vulgaris.

Keywords


Cite This Article

APA Style
GUO, Q., QI, J., LIANG, X., ZHAO, Z., BAI, J. et al. (2023). Analysis of differentially expressed genes in verruca vulgaris vs. adjacent normal skin by rna-sequencing. BIOCELL, 47(11), 2435-2443. https://doi.org/10.32604/biocell.2023.043126
Vancouver Style
GUO Q, QI J, LIANG X, ZHAO Z, BAI J, XIE F, et al. Analysis of differentially expressed genes in verruca vulgaris vs. adjacent normal skin by rna-sequencing. BIOCELL . 2023;47(11):2435-2443 https://doi.org/10.32604/biocell.2023.043126
IEEE Style
Q. GUO et al., “Analysis of differentially expressed genes in Verruca vulgaris vs. adjacent normal skin by RNA-sequencing,” BIOCELL , vol. 47, no. 11, pp. 2435-2443, 2023. https://doi.org/10.32604/biocell.2023.043126



cc Copyright © 2023 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 569

    View

  • 500

    Download

  • 0

    Like

Share Link