Table of Content

Open Access iconOpen Access

ARTICLE

Sentence Similarity Measurement with Convolutional Neural Networks Using Semantic and Syntactic Features

Shiru Zhang1, Zhiyao Liang1, *, Jian Lin2

1 Faculty of Information Technology, Macau University of Science and Technology, Macau.
2 Management Information Systems, University of Houston-Clear Lake, Houston, 77058, USA.

* Corresponding Author: Zhiyao Liang. Email: email.

Computers, Materials & Continua 2020, 63(2), 943-957. https://doi.org/10.32604/cmc.2020.08800

Abstract

Calculating the semantic similarity of two sentences is an extremely challenging problem. We propose a solution based on convolutional neural networks (CNN) using semantic and syntactic features of sentences. The similarity score between two sentences is computed as follows. First, given a sentence, two matrices are constructed accordingly, which are called the syntax model input matrix and the semantic model input matrix; one records some syntax features, and the other records some semantic features. By experimenting with different arrangements of representing the syntactic and semantic features of the sentences in the matrices, we adopt the most effective way of constructing the matrices. Second, these two matrices are given to two neural networks, which are called the sentence model and the semantic model, respectively. The convolution process of the neural networks of the two models is carried out in multiple perspectives. The outputs of the two models are combined as a vector, which is the representation of the sentence. Third, given the representation vectors of two sentences, the similarity score of these representations is computed by a layer in the CNN. Experiment results show that our algorithm (SSCNN) surpasses the performance MPCPP, which noticeably the best recent work of using CNN for sentence similarity computation. Comparing with MPCNN, the convolution computation in SSCNN is considerably simpler. Based on the results of this work, we suggest that by further utilization of semantic and syntactic features, the performance of sentence similarity measurements has considerable potentials to be improved in the future.

Keywords


Cite This Article

APA Style
Zhang, S., Liang, Z., Lin, J. (2020). Sentence similarity measurement with convolutional neural networks using semantic and syntactic features. Computers, Materials & Continua, 63(2), 943-957. https://doi.org/10.32604/cmc.2020.08800
Vancouver Style
Zhang S, Liang Z, Lin J. Sentence similarity measurement with convolutional neural networks using semantic and syntactic features. Comput Mater Contin. 2020;63(2):943-957 https://doi.org/10.32604/cmc.2020.08800
IEEE Style
S. Zhang, Z. Liang, and J. Lin "Sentence Similarity Measurement with Convolutional Neural Networks Using Semantic and Syntactic Features," Comput. Mater. Contin., vol. 63, no. 2, pp. 943-957. 2020. https://doi.org/10.32604/cmc.2020.08800



cc Copyright © 2020 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 3344

    View

  • 1608

    Download

  • 0

    Like

Share Link