Table of Content

Open Access iconOpen Access

ARTICLE

crossmark

Abnormal Behavior Detection and Recognition Method Based on Improved ResNet Model

Huifang Qian1, Xuan Zhou1, *, Mengmeng Zheng1

1 School of Electronics and Information, Xi’an Polytechnic University, Xi’an, 710048, China.

* Corresponding Author: Xuan Zhou. Email: email.

Computers, Materials & Continua 2020, 65(3), 2153-2167. https://doi.org/10.32604/cmc.2020.011843

Abstract

The core technology in an intelligent video surveillance system is that detecting and recognizing abnormal behaviors timely and accurately. The key breakthrough point in recognizing abnormal behaviors is how to obtain the effective features of the picture, so as to solve the problem of recognizing them. In response to this difficulty, this paper introduces an adjustable jump link coefficients model based on the residual network. The effective coefficients for each layer of the network can be set after using this model to further improving the recognition accuracy of abnormal behavior. A convolution kernel of 1×1 size is added to reduce the number of parameters for the purpose of improving the speed of the model in this paper. In order to reduce the noise of the data edge, and at the same time, improve the accuracy of the data and speed up the training, a BN (Batch Normalization) layer is added before the activation function in this network. This paper trains this network model on the public ImageNet dataset, and then uses the transfer learning method to recognize these abnormal behaviors of human in the UTI behavior dataset processed by the YOLO_v3 target detection network. Under the same experimental conditions, compared with the original ResNet-50 model, the improved model in this paper has a 2.8% higher accuracy in recognition of abnormal behaviors on the public UTI dataset.

Keywords


Cite This Article

APA Style
Qian, H., Zhou, X., Zheng, M. (2020). Abnormal behavior detection and recognition method based on improved resnet model. Computers, Materials & Continua, 65(3), 2153-2167. https://doi.org/10.32604/cmc.2020.011843
Vancouver Style
Qian H, Zhou X, Zheng M. Abnormal behavior detection and recognition method based on improved resnet model. Comput Mater Contin. 2020;65(3):2153-2167 https://doi.org/10.32604/cmc.2020.011843
IEEE Style
H. Qian, X. Zhou, and M. Zheng "Abnormal Behavior Detection and Recognition Method Based on Improved ResNet Model," Comput. Mater. Contin., vol. 65, no. 3, pp. 2153-2167. 2020. https://doi.org/10.32604/cmc.2020.011843

Citations




cc This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 4200

    View

  • 2335

    Download

  • 0

    Like

Share Link