Vol.70, No.2, 2022, pp.4169-4184, doi:10.32604/cmc.2022.019277
OPEN ACCESS
ARTICLE
Privacy-Enhanced Data Deduplication Computational Intelligence Technique for Secure Healthcare Applications
  • Jinsu Kim1, Sungwook Ryu2, Namje Park1,3,*
1 Department of Convergence Information Security, Graduate School, Jeju National University, 63294, Korea
2 Master’s Program in Future Strategy, Korea Advanced Institute of Science and Technology, 34141, Korea
3 Department of Computer Education, Teachers College, Jeju National University, 63294, Korea
* Corresponding Author: Namje Park. Email:
(This article belongs to this Special Issue: Integrity and Multimedia Data Management in Healthcare Applications using IoT)
Received 08 April 2021; Accepted 10 May 2021; Issue published 27 September 2021
Abstract
A significant number of cloud storage environments are already implementing deduplication technology. Due to the nature of the cloud environment, a storage server capable of accommodating large-capacity storage is required. As storage capacity increases, additional storage solutions are required. By leveraging deduplication, you can fundamentally solve the cost problem. However, deduplication poses privacy concerns due to the structure itself. In this paper, we point out the privacy infringement problem and propose a new deduplication technique to solve it. In the proposed technique, since the user’s map structure and files are not stored on the server, the file uploader list cannot be obtained through the server’s meta-information analysis, so the user’s privacy is maintained. In addition, the personal identification number (PIN) can be used to solve the file ownership problem and provides advantages such as safety against insider breaches and sniffing attacks. The proposed mechanism required an additional time of approximately 100 ms to add a IDRef to distinguish user-file during typical deduplication, and for smaller file sizes, the time required for additional operations is similar to the operation time, but relatively less time as the file’s capacity grows.
Keywords
Computational intelligence; cloud; multimedia; data deduplication
Cite This Article
J. Kim, S. Ryu and N. Park, "Privacy-enhanced data deduplication computational intelligence technique for secure healthcare applications," Computers, Materials & Continua, vol. 70, no.2, pp. 4169–4184, 2022.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.