Open Access iconOpen Access



Detection of Osteoarthritis Based on EHO Thresholding

R. Kanthavel1,*, R. Dhaya2, Kanagaraj Venusamy3

1 Department of Computer Engineering, King Khalid University, Abha, Saudi Arabia
2 Department of Computer Science, King Khalid University, Sarat Abidha Campus, Abha, Saudi Arabia
3 Department of Engineering, University of Technology and Applied Sciences, Al Mussanah, Sultanate of Oman

* Corresponding Author: R. Kanthavel. Email: email

Computers, Materials & Continua 2022, 71(3), 5783-5798.


Knee Osteoarthritis (OA) is a joint disease that is commonly observed in people around the world. Osteoarthritis commonly affects patients who are obese and those above the age of 60. A valid knee image was generated by Computed Tomography (CT). In this work, efficient segmentation of CT images using Elephant Herding Optimization (EHO) optimization is implemented. The initial stage employs, the CT image normalization and the normalized image is incited to image enhancement through histogram correlation. Consequently, the enhanced image is segmented by utilizing Niblack and Bernsen algorithm. The (EHO) optimized outcome is evaluated in two steps. The initial step includes image enhancement with the measure of Mean square error (MSE), Peak signal to noise ratio (PSNR) and Structural similarity index (SSIM). The following step includes the segmentation which includes the measure of Accuracy, Sensitivity and Specificity. The comparative analysis of EHO provides 95% of accuracy, 94% of specificity and 93% of sensitivity than that of Active contour and Otsu threshold.


Cite This Article

APA Style
Kanthavel, R., Dhaya, R., Venusamy, K. (2022). Detection of osteoarthritis based on EHO thresholding. Computers, Materials & Continua, 71(3), 5783-5798.
Vancouver Style
Kanthavel R, Dhaya R, Venusamy K. Detection of osteoarthritis based on EHO thresholding. Comput Mater Contin. 2022;71(3):5783-5798
IEEE Style
R. Kanthavel, R. Dhaya, and K. Venusamy "Detection of Osteoarthritis Based on EHO Thresholding," Comput. Mater. Contin., vol. 71, no. 3, pp. 5783-5798. 2022.

cc This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 1288


  • 741


  • 0


Share Link