Linguo Li1,2, Xuwen Huang2, Shunqiang Qian2, Zhangfei Li2, Shujing Li2,*, Romany F. Mansour3
CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 3073-3090, 2022, DOI:10.32604/cmc.2022.026625
Abstract In order to address the problems of Coyote Optimization Algorithm in image thresholding, such as easily falling into local optimum, and slow convergence speed, a Fuzzy Hybrid Coyote Optimization Algorithm (hereinafter referred to as FHCOA) based on chaotic initialization and reverse learning strategy is proposed, and its effect on image thresholding is verified. Through chaotic initialization, the random number initialization mode in the standard coyote optimization algorithm (COA) is replaced by chaotic sequence. Such sequence is nonlinear and long-term unpredictable, these characteristics can effectively improve the diversity of the population in the optimization algorithm. Therefore,… More >